Mars Transit Vehicle Design Document

HERMES-class Interplanetary Crew Transport

1,990 words
~10 min read
Contains SVG Diagrams
Contains Technical Diagrams
1 AI Thinking Trace

# Mars Transit Vehicle Design Document

HERMES-class Interplanetary Crew Transport

40+ Crew Capacity | 6-Month Transit Duration | Fully Regenerative Life Support


πŸ“‹ Executive Summary

ParameterSpecification
**Designation**MTV-1 "HERMES" (Human Exploration & Research Mars Expedition Ship)
**Crew Capacity**44 nominal / 48 maximum
**Transit Duration**180 days (Hohmann) / 140 days (fast conjunction)
**Habitable Volume**2,850 mΒ³ (pressurized) / 1,920 mΒ³ (habitable)
**Total Dry Mass**285 metric tons
**Fully Loaded Mass**380 metric tons (without propulsion)
**Life Support Closure**98.2% water / 95.5% oxygen
**Artificial Gravity**0.38g (Mars-equivalent) via rotation
**Power Generation**450 kWe (nuclear electric)
**Radiation Protection**≀500 mSv total mission dose
**Assembly Orbit**400 km LEO, assembled via 4Γ— ARES-VII launches

1. Mission Requirements Derivation

1.1 Crew Requirements Analysis

CREW COMPLEMENT: 44 PERSONNEL
══════════════════════════════════════════════════════════════════════════

COMMAND & OPERATIONS (8)
β”œβ”€β”€ Mission Commander (1)
β”œβ”€β”€ Pilot/Navigator (2)
β”œβ”€β”€ Flight Engineers (3)
└── Communications/IT Specialists (2)

SCIENCE & EXPLORATION (14)
β”œβ”€β”€ Geologists/Planetary Scientists (4)
β”œβ”€β”€ Astrobiologists (3)
β”œβ”€β”€ Atmospheric Scientists (2)
β”œβ”€β”€ Robotics Engineers (3)
└── Field Research Coordinators (2)

MEDICAL & LIFE SCIENCES (8)
β”œβ”€β”€ Flight Surgeons/Physicians (3)
β”œβ”€β”€ Nurses/Paramedics (2)
β”œβ”€β”€ Psychologist/Behavioral Health (1)
β”œβ”€β”€ Pharmacist/Biochemist (1)
└── Exercise Physiologist (1)

ENGINEERING & MAINTENANCE (10)
β”œβ”€β”€ Mechanical Engineers (3)
β”œβ”€β”€ Electrical Engineers (2)
β”œβ”€β”€ Life Support Technicians (2)
β”œβ”€β”€ EVA Specialists (2)
└── Manufacturing/Fabrication Tech (1)

COLONY OPERATIONS (4)
β”œβ”€β”€ Habitat Systems Manager (1)
β”œβ”€β”€ Agriculture/ISRU Specialist (2)
└── Logistics Coordinator (1)

══════════════════════════════════════════════════════════════════════════
DEMOGRAPHIC REQUIREMENTS:
β€’ Age range: 30-55 years
β€’ Gender balance: 45-55% target
β€’ Cross-training: Each crew member qualified in 2+ secondary roles
β€’ Watch rotation: 3 shifts Γ— 8 hours, 4 duty sections

1.2 Life Support Requirements (Per Person Per Day)

ResourceConsumptionUnit44 Crew/Day180-Day Mission
Oxygen (metabolic)0.84kg37.0 kg6,652 kg
Potable Water2.5L110 L19,800 L
Hygiene Water6.0L264 L47,520 L
Food (dry mass)0.62kg27.3 kg4,910 kg
Food (with water)1.8kg79.2 kg14,256 kg
COβ‚‚ Production1.0kg44.0 kg7,920 kg
Urine1.5L66 L11,880 L
Fecal Matter0.12kg5.3 kg950 kg
Sweat/Respiration2.3L101 L18,216 L
Metabolic Heat120W5.3 kWContinuous

1.3 Key Design Drivers

CRITICAL DESIGN REQUIREMENTS
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

LIFE SUPPORT
β”œβ”€β”€ 98%+ water recovery (minimize resupply mass)
β”œβ”€β”€ 95%+ oxygen recovery from COβ‚‚
β”œβ”€β”€ 180+ day continuous operation without resupply
β”œβ”€β”€ Graceful degradation (30-day open-loop backup)
└── Fire detection/suppression throughout

RADIATION PROTECTION
β”œβ”€β”€ Storm shelter for 44 crew (SPE protection)
β”œβ”€β”€ GCR shielding to limit dose <500 mSv
β”œβ”€β”€ Real-time dosimetry for all crew
└── Medical countermeasures available

CREW HEALTH
β”œβ”€β”€ Artificial gravity (0.3-0.5g range)
β”œβ”€β”€ Exercise facilities (2-hour daily requirement)
β”œβ”€β”€ Private quarters for psychological health
β”œβ”€β”€ Medical/surgical capability
└── Nutrition variety (200+ menu items)

SAFETY & REDUNDANCY
β”œβ”€β”€ Dual-fault tolerance on critical systems
β”œβ”€β”€ Safe haven capability (14 days in emergency)
β”œβ”€β”€ Abort capability through Day 30
β”œβ”€β”€ Fire isolation/compartmentalization
└── Debris shielding (1 cm aluminum equivalent)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

2. Vehicle Architecture

2.1 Configuration Trade Study

ConfigurationProsConsScore
**Monolithic**Simple integration, rigidToo large for single launch, no gravity2/5
**Linear Modular**Launch flexibilityNo artificial gravity, long traversal3/5
**Rotating Truss**Artificial gravity, modularComplex mechanisms, power transfer4/5
**Tethered Rotation**High radius, simpleStability issues, tether risk3/5
**Dual-Habitat Counter-Rotation** βœ“Gravity, redundancy, balancedAssembly complexity5/5

2.2 Selected Architecture: Counter-Rotating Habitat Configuration

HERMES-CLASS MARS TRANSIT VEHICLE Counter-Rotating Dual Habitat Configuration | 44 Crew | 180-Day Transit DOCKING HAB-A 22 Crew HAB-B 22 Crew KILOPOWER PROP I/F STORM SHELTER 2.1 RPM 2.1 RPM 112 m Overall Length 56 m radius CONFIGURATION β€’ Dual counter-rotating habs β€’ 0.38g Mars-equivalent β€’ Zero net angular momentum β€’ Zero-g hub access β€’ Full redundancy (2 habs) MASS SUMMARY Dry Mass: 285 t Consumables: 95 t Loaded Mass: 380 t LIFE SUPPORT β€’ 98.2% water recovery β€’ 95.5% Oβ‚‚ from COβ‚‚ β€’ 44 crew Γ— 180 days β€’ MOXIE backup systems β€’ 30-day open-loop reserve Central Hub (Zero-G) Propulsion Interface

2.3 Module Breakdown Structure

HERMES MTV - MODULE BREAKDOWN
══════════════════════════════════════════════════════════════════════════════════

MTV-1 HERMES
β”œβ”€β”€ CENTRAL HUB MODULE (CHM)
β”‚   β”œβ”€β”€ Docking Adapter (forward)
β”‚   β”œβ”€β”€ Zero-G Laboratory
β”‚   β”œβ”€β”€ Cupola/Observation
β”‚   β”œβ”€β”€ Storm Shelter Core
β”‚   β”œβ”€β”€ Rotation Bearings (Γ—2)
β”‚   └── EVA Airlock
β”‚
β”œβ”€β”€ HABITAT MODULE A (HM-A) - Port
β”‚   β”œβ”€β”€ Deck 1: Crew Quarters (11 cabins)
β”‚   β”œβ”€β”€ Deck 2: Common Area / Galley
β”‚   β”œβ”€β”€ Deck 3: Life Support Primary
β”‚   └── Deck 4: Medical Bay / Gym
β”‚
β”œβ”€β”€ HABITAT MODULE B (HM-B) - Starboard
β”‚   β”œβ”€β”€ Deck 1: Crew Quarters (11 cabins)
β”‚   β”œβ”€β”€ Deck 2: Science Labs / Workshop
β”‚   β”œβ”€β”€ Deck 3: Life Support Backup
β”‚   └── Deck 4: Storage / Storm Shelter Ext.
β”‚
β”œβ”€β”€ TRUSS ASSEMBLY
β”‚   β”œβ”€β”€ Port Truss Segment (Γ—3)
β”‚   β”œβ”€β”€ Starboard Truss Segment (Γ—3)
β”‚   β”œβ”€β”€ Power/Data Cabling
β”‚   └── Fluid Transfer Lines
β”‚
β”œβ”€β”€ POWER & THERMAL MODULE (PTM)
β”‚   β”œβ”€β”€ Kilopower Reactors (Γ—4)
β”‚   β”œβ”€β”€ Heat Rejection Radiators
β”‚   β”œβ”€β”€ Power Management & Distribution
β”‚   └── Thermal Control System
β”‚
└── PROPULSION INTERFACE ADAPTER (PIA)
    β”œβ”€β”€ Structural Interface Ring
    β”œβ”€β”€ Propellant Feed Connections
    β”œβ”€β”€ Avionics Integration
    └── Backup Docking Port

══════════════════════════════════════════════════════════════════════════════════

3. Artificial Gravity System

3.1 Rotation Parameters

ParameterValueRationale
**Target Gravity**0.38g (3.73 m/sΒ²)Mars surface equivalent - pre-adaptation
**Rotation Radius**56 mBalance between gravity & Coriolis effects
**Rotation Rate**2.1 RPMBelow comfort threshold of 4 RPM
**Tangential Velocity**12.3 m/sManageable for crew movement
**Gravity Gradient**0.007 g/m<2% head-to-foot differential
**Coriolis Effect**0.26 m/sΒ²Acceptable with crew adaptation

3.2 Counter-Rotation System

COUNTER-ROTATION MECHANISM
═══════════════════════════════════════════════════════════════════════════════

                    Zero Net Angular Momentum Design
    
        HAB-A                   HUB                    HAB-B
    ◄── 2.1 RPM                 β”‚                   2.1 RPM ──►
        (CCW)                   β”‚                     (CW)
           β•²                    β”‚                    β•±
            β•²    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β•±
             β•²   β”‚                          β”‚    β•±
              β•²  β”‚   ROTATION BEARING       β”‚   β•±
               β•² β”‚   ASSEMBLY (RBA)         β”‚  β•±
                β•²β”‚                          β”‚β•±
    ════════════════════════════════════════════════════════
    
    BEARING SPECIFICATIONS:
    β”œβ”€β”€ Type: Magnetic bearing with mechanical backup
    β”œβ”€β”€ Torque capacity: 50,000 NΒ·m continuous
    β”œβ”€β”€ Power transfer: Slip rings + wireless (backup)
    β”œβ”€β”€ Data transfer: Fiber optic rotary joint
    β”œβ”€β”€ Fluid transfer: Rotary union (8 channels)
    β”œβ”€β”€ Design life: 20,000 hours continuous rotation
    └── Maintenance: Replaceable bearing cartridges
    
    SPIN-UP/SPIN-DOWN:
    β”œβ”€β”€ Electric motors: 4Γ— 25 kW brushless DC
    β”œβ”€β”€ Spin-up time: 45 minutes (0 to 2.1 RPM)
    β”œβ”€β”€ Emergency stop: <10 minutes
    └── Power consumption: 8 kW steady-state

═══════════════════════════════════════════════════════════════════════════════

3.3 Crew Transition Between Gravity Zones


4. Environmental Control & Life Support System (ECLSS)

4.1 ECLSS Architecture Overview

HERMES ECLSS - CLOSED LOOP LIFE SUPPORT 98.2% Water Recovery | 95.5% Oxygen Recovery | 44 Crew × 180 Days CREW (44) O₂ in: 37 kg/day CO₂ out: 44 kg/day H₂O: 374 L/day ATMOSPHERE MGMT CDRA CO₂ Removal SABATIER CO₂→CH₄+H₂O OGS H₂O→O₂+H₂ TCCS Trace Contam. 95.5% O₂ Recovery WATER RECOVERY UPA Urine Process WPA Water Process CHX Humidity Cond. BRINE Brine Recovery 98.2% H₂O Recovery FOOD SYSTEMS STORED 14,256 kg FRESH Hydroponic GALLEY (2×) Prep, cooking, cleaning WASTE PROCESSING SOLID Compaction TRASH Storage METHANE CAPTURE From waste processing THERMAL CONTROL SYSTEM Heat rejection: 180 kW | Radiator area: 850 m² Internal loops: Propylene glycol/H₂O | External: Ammonia POWER 450 kWe ECLSS load: 85 kW RESERVES O₂: 2,400 kg N₂: 1,800 kg H₂O: 8,500 L (30-day backup) O₂ CO₂ Clean H₂O Waste H₂O Food Waste H₂ MASS FLOW LEGEND O₂ (Oxygen) CO₂ (Carbon Dioxide) H₂O (Water) Food Waste H₂ (internal)

4.2 Atmosphere Management System

4.2.1 Atmosphere Composition

ParameterNominalRangeISS Comparison
Total Pressure101.3 kPa97-103 kPa101.3 kPa
Oβ‚‚ Partial Pressure21.3 kPa19.5-23.5 kPa21.3 kPa
COβ‚‚ Partial Pressure0.4 kPa<0.7 kPa0.3-0.5 kPa
Nβ‚‚ Partial Pressure79.6 kPa78-81 kPa79.6 kPa
Temperature22Β°C18-26Β°C22Β°C
Relative Humidity45%30-60%40-60%
Air Velocity0.1-0.2 m/s0.05-0.4 m/s0.1-0.2 m/s

4.2.2 Carbon Dioxide Removal & Reduction

COβ‚‚ PROCESSING SYSTEM - FOUR-BED MOLECULAR SIEVE
═══════════════════════════════════════════════════════════════════════════════

CARBON DIOXIDE REMOVAL ASSEMBLY (CDRA)
β”œβ”€β”€ Technology: 4-bed molecular sieve (zeolite 5A)
β”œβ”€β”€ Capacity: 2.2 kg COβ‚‚/hour (53 kg/day max)
β”œβ”€β”€ Crew supported: 50 (with margin)
β”œβ”€β”€ Power consumption: 1.2 kW
β”œβ”€β”€ Cycle time: 144 minutes (6 min half-cycles)
β”œβ”€β”€ Mass: 280 kg
β”œβ”€β”€ Volume: 0.8 mΒ³
└── Redundancy: 2Γ— units (HAB-A and HAB-B)

    CYCLE OPERATION:
    
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚   BED 1         BED 2         BED 3         BED 4                  β”‚
    β”‚  (ADSORB)      (DESORB)      (ADSORB)      (DESORB)                β”‚
    β”‚     β•‘             β•‘             β•‘             β•‘                    β”‚
    β”‚     β•‘  Cabin      β•‘  To         β•‘  Cabin      β•‘  To                β”‚
    β”‚     β•‘  Air In     β•‘  Sabatier   β•‘  Air In     β•‘  Sabatier          β”‚
    β”‚     β–Ό             β–²             β–Ό             β–²                    β”‚
    β”‚   β”Œβ”€β”€β”€β”  Heat   β”Œβ”€β”€β”€β”        β”Œβ”€β”€β”€β”  Heat   β”Œβ”€β”€β”€β”                  β”‚
    β”‚   β”‚ Z β”‚ ────→   β”‚ Z β”‚        β”‚ Z β”‚ ────→   β”‚ Z β”‚                  β”‚
    β”‚   β”‚ E β”‚         β”‚ E β”‚        β”‚ E β”‚         β”‚ E β”‚                  β”‚
    β”‚   β”‚ O β”‚         β”‚ O β”‚        β”‚ O β”‚         β”‚ O β”‚                  β”‚
    β”‚   β”‚ L β”‚         β”‚ L β”‚        β”‚ L β”‚         β”‚ L β”‚                  β”‚
    β”‚   β”‚ I β”‚  Cool   β”‚ I β”‚        β”‚ I β”‚  Cool   β”‚ I β”‚                  β”‚
    β”‚   β”‚ T β”‚ ←────   β”‚ T β”‚        β”‚ T β”‚ ←────   β”‚ T β”‚                  β”‚
    β”‚   β”‚ E β”‚         β”‚ E β”‚        β”‚ E β”‚         β”‚ E β”‚                  β”‚
    β”‚   β””β”€β”€β”€β”˜         β””β”€β”€β”€β”˜        β””β”€β”€β”€β”˜         β””β”€β”€β”€β”˜                  β”‚
    β”‚     β•‘             β•‘             β•‘             β•‘                    β”‚
    β”‚     β–Ό             β•‘             β–Ό             β•‘                    β”‚
    β”‚   Clean          β•‘           Clean           β•‘                    β”‚
    β”‚   Air Out        β•‘           Air Out         β•‘                    β”‚
    β”‚                  β–Ό                           β–Ό                     β”‚
    β”‚            β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                   β”‚
    β”‚            β”‚         SABATIER REACTOR         β”‚                   β”‚
    β”‚            β”‚     COβ‚‚ + 4Hβ‚‚ β†’ CHβ‚„ + 2Hβ‚‚O      β”‚                   β”‚
    β”‚            β”‚    (Nickel catalyst @ 400Β°C)     β”‚                   β”‚
    β”‚            β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                   β”‚
    β”‚                      β”‚             β”‚                              β”‚
    β”‚                      β–Ό             β–Ό                              β”‚
    β”‚                    CHβ‚„           Hβ‚‚O                              β”‚
    β”‚                  (vented)    (to water system)                    β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

SABATIER REACTOR SPECIFICATIONS:
β”œβ”€β”€ COβ‚‚ processing rate: 44 kg/day
β”œβ”€β”€ Hβ‚‚ consumption: 8 kg/day (from OGS)
β”œβ”€β”€ Hβ‚‚O production: 36 kg/day
β”œβ”€β”€ CHβ‚„ production: 16 kg/day (vented or stored)
β”œβ”€β”€ Operating temperature: 400Β°C
β”œβ”€β”€ Power consumption: 0.8 kW
β”œβ”€β”€ COβ‚‚ conversion efficiency: 99.5%
└── ALTERNATIVE: Bosch reactor (solid carbon, no CHβ‚„ vent) - backup

User:I am working on this task: "Design Interplanetary Transportation System" - Develop the complete transportation architecture capable of delivering 40+ humans and essential cargo to Mars. This includes designing or selecting super-heavy lift vehicles, crew transfer vehicles, Mars descent/ascent craft, and establishing orbital assembly procedures. Must account for the massive payload requirements including life support, consumables, and initial colony infrastructure for 40 colonists.

Please help me complete this specific subtask: "Develop powered descent vehicles for 10-person landing pods"

Be thorough and detailed in your response.
AI:
AI Thinking Trace

The user is asking me to design powered descent vehicles for 10-person landing pods as part of a Mar...

Created by Erik Bethke in Bike4Mind using the QuestMaster deep agentic flow + Claude Opus 4.5 by Anthropic