Quest Master Plan: Super-Heavy Lift Vehicle Design
ARES-VII Heavy Launch System
# Quest Master Plan: Super-Heavy Lift Vehicle Design
ARES-VII Heavy Launch System
150+ Metric Ton LEO Payload Capacity
📋 Executive Summary
| Parameter | Specification |
|---|---|
| **Designation** | ARES-VII (Advanced Reusable Earth-to-Space VII) |
| **Payload to LEO (400km)** | 165 metric tons (expendable) / 145 metric tons (reusable) |
| **Payload to Mars Transfer Orbit** | 45 metric tons (with orbital refueling) |
| **Total Lift-off Mass** | 4,850 metric tons |
| **Height** | 128 meters |
| **Core Diameter** | 9 meters |
| **Target Cost per kg to LEO** | $800 (reusable) / $2,400 (expendable) |
| **Development Timeline** | 8-10 years |
1. Mission Requirements Analysis
1.1 Derived Requirements from Mars Mission Architecture
MARS COLONY MISSION REQUIREMENTS (40+ Colonists)
├── Crew Transfer Vehicle Mass: ~120 metric tons (dry)
├── Mars Descent Vehicle Mass: ~85 metric tons each (×2 required)
├── Initial Habitat Modules: ~95 metric tons
├── Life Support Systems: ~40 metric tons
├── Power Generation (Nuclear): ~35 metric tons
├── ISRU Equipment: ~25 metric tons
├── Consumables (2-year supply): ~60 metric tons
├── Surface Vehicles: ~30 metric tons
├── Science/Medical Equipment: ~20 metric tons
└── Contingency/Spares: ~50 metric tons
────────────────────────────────────────────────
TOTAL TO LEO (before assembly): ~560 metric tons minimum
LAUNCHES REQUIRED: 4-5 (with 150t capacity)1.2 Key Performance Requirements
| Requirement | Target | Threshold | Rationale |
|---|---|---|---|
| LEO Payload | 165 t | 150 t | Single-launch habitat delivery |
| Payload Fairing Diameter | 10 m | 8.4 m | Habitat module dimensions |
| Payload Fairing Height | 25 m | 20 m | Crew vehicle integration |
| Launch Cadence | 12/year | 6/year | Mars window support |
| Reusability | 10 flights | 5 flights | Cost reduction |
| Pad Turnaround | 14 days | 30 days | Campaign tempo |
2. Vehicle Architecture
2.1 Configuration Trade Study
CONFIGURATION OPTIONS ANALYZED
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Option A: Parallel Staging (Side Boosters + Core)
├── Pros: Proven architecture, throttle control, abort options
├── Cons: Complex separation, integration costs
└── Heritage: Saturn V, SLS, Falcon Heavy
Option B: Serial Staging (Tandem Stack)
├── Pros: Simpler integration, cleaner aerodynamics
├── Cons: Larger single stages, transport challenges
└── Heritage: N1, Starship/Super Heavy
Option C: Hybrid (Core + Crossfeed Boosters) ◄── SELECTED
├── Pros: Optimal performance, reusability friendly
├── Cons: Crossfeed complexity
└── Heritage: Evolved from Falcon Heavy concepts
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━2.2 Selected Architecture: ARES-VII
3. Propulsion System Design
3.1 Engine Selection: AR-1 "Prometheus"
The AR-1 is a new-development, full-flow staged combustion methalox engine optimized for both sea-level and vacuum operations with deep throttling capability for propulsive landing.
| Parameter | AR-1 (Sea Level) | AR-2 (Vacuum) |
|---|---|---|
| **Propellants** | LOX/LCH₄ | LOX/LCH₄ |
| **Thrust (100%)** | 2,400 kN | 1,200 kN |
| **Specific Impulse** | 350 s | 380 s |
| **Chamber Pressure** | 300 bar | 280 bar |
| **Throttle Range** | 40-100% | 60-100% |
| **Mixture Ratio** | 3.6:1 | 3.6:1 |
| **Engine Mass** | 1,850 kg | 980 kg |
| **Thrust/Weight** | 132 | 125 |
| **Restart Capability** | 10 cycles | 5 cycles |
| **Service Life** | 20 flights | 15 flights |
3.2 Engine Configuration by Stage
┌─────────────────────────────────────────────────────────────────────┐
│ PROPULSION ARCHITECTURE │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ SIDE BOOSTERS (×2) CORE STAGE UPPER STAGE │
│ ───────────────── ────────── ─────────── │
│ │
│ ● ● ● ● ● ● ● │
│ ● ● ● ● ● ● ● ● │
│ ● ● ● ● │
│ ● │
│ │
│ 7× AR-1 Engines 9× AR-1 Engines 3× AR-2 Engines │
│ 16,800 kN per booster 21,600 kN total 3,600 kN total │
│ 33,600 kN combined │
│ │
│ TOTAL LIFTOFF THRUST: 55,200 kN (5,629 tonnes-force) │
│ │
└─────────────────────────────────────────────────────────────────────┘3.3 Propellant Crossfeed System
The crossfeed system transfers propellant from boosters to core during ascent, allowing the core to reach staging with nearly full tanks.
CROSSFEED SEQUENCE TIMELINE
════════════════════════════════════════════════════════════════════
T+0s T+90s T+150s T+180s T+480s
│ │ │ │ │
▼ ▼ ▼ ▼ ▼
┌─────────────┬─────────────┬─────────────┬─────────────┬──────────┐
│ LIFTOFF │ CROSSFEED │ BOOSTER │ CORE │ UPPER │
│ │ ACTIVE │ SEPARATION │ BURNS │ STAGE │
│ All engines │ Boosters │ Boosters │ Core at 92% │ 3× AR-2 │
│ at 100% │ feed core │ RTLS burn │ propellant │ ignites │
│ │ stage │ begins │ remaining │ │
└─────────────┴─────────────┴─────────────┴─────────────┴──────────┘
CROSSFEED BENEFIT:
├── Without Crossfeed: Core staging at 35% propellant → 142t to LEO
└── With Crossfeed: Core staging at 92% propellant → 165t to LEO
▲
└── +23 metric tons capability (+16%)4. Stage Design Details
4.1 Side Boosters (Quantity: 2)
| Parameter | Value |
|---|---|
| **Length** | 68 m |
| **Diameter** | 5.5 m |
| **Dry Mass** | 42,000 kg |
| **Propellant Mass** | 780,000 kg |
| **Mass Ratio** | 19.6 |
| **Engines** | 7× AR-1 |
| **Burn Time** | ~150 s |
| **Recovery Method** | Propulsive RTLS |
**Reusability Features:**
Grid fins (4×) for aerodynamic control during descent
Deployable landing legs (4×) with crush-core attenuators
Heat-resistant TPS on leading edges
Autonomous flight termination system
Dedicated landing propellant reserve (8% of capacity)
4.2 Core Stage
| Parameter | Value |
|---|---|
| **Length** | 78 m |
| **Diameter** | 9.0 m |
| **Dry Mass** | 95,000 kg |
| **Propellant Mass** | 2,100,000 kg |
| **Mass Ratio** | 23.1 |
| **Engines** | 9× AR-1 |
| **Burn Time** | ~330 s (with crossfeed) |
| **Recovery Method** | Downrange barge landing |
**Structural Design:**
Aluminum-lithium 2195 alloy tank walls
Composite intertank and skirt structures
Common bulkhead between LOX and LCH₄ tanks
Integrated autogenous pressurization (gaseous methane/oxygen)
4.3 Upper Stage
| Parameter | Value |
|---|---|
| **Length** | 18 m |
| **Diameter** | 8.4 m |
| **Dry Mass** | 18,000 kg |
| **Propellant Mass** | 280,000 kg |
| **Mass Ratio** | 16.6 |
| **Engines** | 3× AR-2 |
| **Burn Time** | 580 s (max) |
| **Coast Capability** | 6 hours (extended: 24 hours) |
**Upper Stage Features:**
Active thermal management for long-coast missions
Helium pressurization with cold-gas RCS
Multiple restart capability for complex orbit insertion
Optional upgrade to in-space refueling compatibility
4.4 Payload Fairing
| Parameter | Value |
|---|---|
| **Outer Diameter** | 10.0 m |
| **Usable Diameter** | 9.4 m |
| **Length Options** | 20m / 25m / 30m |
| **Material** | Carbon composite sandwich |
| **Separation System** | Pneumatic pushers with frangible joints |
| **Acoustic Attenuation** | -8 dB (blankets optional: -12 dB) |
5. Mass Budget
6. Flight Profile & Performance
6.1 Ascent Trajectory Timeline
ARES-VII ASCENT PROFILE TO 400km LEO
══════════════════════════════════════════════════════════════════════════════
TIME EVENT ALT VEL ACCEL STATUS
──────────────────────────────────────────────────────────────────────────────
T-00:00:10 Engine ignition sequence 0 km 0 m/s 0 g
T+00:00:00 LIFTOFF 0 km 0 m/s 1.16 g ▓▓▓▓▓▓▓▓
T+00:00:07 Tower clear 0.2 km 45 m/s 1.2 g
T+00:00:58 Max-Q (throttle down) 12 km 420 m/s 2.8 g ▓▓▓▓░░░░
T+00:01:10 Throttle up 18 km 580 m/s 3.2 g ▓▓▓▓▓▓▓▓
T+00:02:30 BOOSTER SEPARATION 52 km 1,850 m/s 0.5 g ⚡ STAGING
T+00:02:33 Booster boost-back burn start 54 km 1,820 m/s -1.2 g
T+00:03:00 Fairing separation 85 km 2,400 m/s 3.5 g ⚡ JETTISON
T+00:05:30 MECO (Core burnout) 145 km 4,200 m/s 0 g ⚡ STAGING
T+00:05:35 Stage separation 146 km 4,180 m/s 0 g
T+00:05:40 Upper stage ignition 147 km 4,150 m/s 0.8 g ▓▓▓▓▓▓░░
T+00:06:30 Boosters land at LZ-1/LZ-2 0 km 0 m/s 1.0 g ✓ LANDED
T+00:07:45 Core stage lands on ASDS 0 km 0 m/s 1.0 g ✓ LANDED
T+00:09:25 SECO-1 (parking orbit) 200 km 7,780 m/s 0 g ○ COAST
T+00:45:00 Upper stage restart (circ.) 200 km 7,780 m/s 0.9 g ▓▓▓▓░░░░
T+00:48:30 SECO-2 (orbit achieved) 400 km 7,670 m/s 0 g ★ MISSION
T+00:52:00 Payload deployment 400 km 7,670 m/s 0 g ✓ SUCCESS
══════════════════════════════════════════════════════════════════════════════6.2 Delta-V Budget
┌─────────────────────────────────────────────────────────────────────────────┐
│ DELTA-V BUDGET (165t to LEO) │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ Boosters + Core (Parallel) │
│ ████████████████████████████████████████████░░░░░░ 4,200 m/s │
│ │
│ Upper Stage │
│ ████████████████████████████████████████████████░░ 5,400 m/s │
│ │
│ ───────────────────────────────────────────────────────────── │
│ Total Δv Capability: 9,600 m/s │
│ │
│ LOSSES: │
│ ├── Gravity losses: -1,450 m/s │
│ ├── Drag losses: -180 m/s │
│ └── Steering losses: -120 m/s │
│ ───────────────────────────────────────────────── │
│ NET Δv for orbit: 7,850 m/s │
│ │
│ Required for 400km circular LEO: 7,780 m/s ✓ │
│ Margin: 70 m/s (0.9%) │
│ │
└─────────────────────────────────────────────────────────────────────────────┘7. Ground Systems & Infrastructure
7.1 Launch Site Requirements
LAUNCH COMPLEX ARES (LCA) SPECIFICATIONS
═══════════════════════════════════════════════════════════════════════════
┌─────────────────────────────────────────────────────────────────────────┐
│ │
│ [VAB]════════════[CRAWLER WAY]════════════[PAD-A] │
│ │ │ │ │
│ │ │ ├── Flame Trench │
│ │ │ ├── Sound Suppression │
│ │ │ ├── Lightning Towers │
│ │ │ └── Crew Access Arm │
│ │ │ │
│ │ [PROP STORAGE] │
│ │ ├── LOX: 15,000 m³ │
│ │ ├── LCH4: 12,000 m³ │
│ │ └── RP-1 (backup): 2,000 m³ │
│ │ │
│ [HIF]────────────[RUNWAY] │
│ Horizontal │
│ Integration │
│ Facility [LZ-1] [LZ-2] │
│ Booster Booster │
│ Landing Landing │
│ │
└─────────────────────────────────────────────────────────────────────────┘
KEY FACILITIES:
───────────────
• Vertical Assembly Building (VAB): 180m tall, dual high-bay
• Mobile Launch Platform (MLP): 3,500 t capacity crawler-transporter
• Launch Pad A/B: Dual-pad complex with shared propellant storage
• Landing Zones 1 & 2: Autonomous booster recovery, 1.5 km from pad
• Autonomous Spaceport Drone Ship (ASDS): Core stage downrange recovery7.2 Launch Campaign Timeline
| Phase | Duration | Activities |
|---|---|---|
| **Booster Processing** | 7 days | Inspection, refurbishment, testing |
| **Core Processing** | 10 days | Full checkout, tank inspection |
| **Upper Stage Processing** | 5 days | Engine checks, avionics validation |
| **Stage Stacking** | 3 days | Vertical integration in VAB |
| **Payload Integration** | 2 days | Encapsulation and mating |
| **Rollout** | 1 day | Transport to pad |
| **Pad Operations** | 3 days | Connection, testing, propellant loading |
| **Launch** | 1 day | Final countdown and liftoff |
| **TOTAL** | **32 days** | (Target: 21 days with parallel processing) |
8. Reliability & Safety
8.1 Failure Mode Analysis
8.2 Abort Modes
| Phase | Abort Mode | Action | Crew Outcome |
|---|---|---|---|
| **Pad** | Pad Abort | LES fires, crew capsule to ocean splashdown | Nominal recovery |
| **T+0 to T+30s** | Mode 1 Abort | LES fires, ballistic arc to ocean | Nominal recovery |
| **T+30s to T+150s** | Mode 1-C | LES + capsule propulsion, controlled descent | Nominal recovery |
| **T+150s to T+330s** | Mode 2 | Crew vehicle separation, direct abort orbit | Contingency orbit |
| **T+330s+** | Mode 3 | Continue to orbit with degraded performance | Mission continuation |
9. Development Program
9.1 Technology Readiness Assessment
| Technology | Current TRL | Required TRL | Gap Closure |
|---|---|---|---|
| AR-1 Engine | 4 | 9 | Full-scale engine dev program |
| Crossfeed System | 3 | 8 | Ground demonstrator + test flights |
| 9m Diameter Tanks | 5 | 9 | Pathfinder article fabrication |
| Propulsive Landing | 8 | 9 | Flight heritage extension |
| Grid Fins (Scale) | 7 | 9 | Subscale→full scale testing |
| Autonomous ASDS Landing | 8 | 9 | Operational refinement |
9.2 Development Schedule
ARES-VII DEVELOPMENT TIMELINE
════════════════════════════════════════════════════════════════════════════════
YEAR 1 2 3 4 5 6 7 8 9 10
├──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
PHASE A: CONCEPT STUDIES
███████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
PHASE B: PRELIMINARY DESIGN
████████████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
PHASE C: DETAILED DESIGN
████████████████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
AR-1 ENGINE DEVELOPMENT
█████████████████████████████████████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
│ │ │ │
▼ ▼ ▼ ▼
PDR CDR 1st Test Qual Complete
BOOSTER PATHFINDER
█████████████████████████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
│ │
▼ ▼
Structural Test Hop Test
CORE STAGE MANUFACTURING
█████████████████████████████░░░░░░░░░░░░░░░░░░░░
UPPER STAGE MANUFACTURING
████████████████████░░░░░░░░░░░░░░░░░░░░░░░░
INTEGRATED TESTING
███████████████████░░░░░░░░░░░░░░░
│ │
▼ ▼
Stage Test Green Run
LAUNCH SITE CONSTRUCTION
██████████████████████████████████████████████░░░░░░░░░░░░░░░░░░░░░
TEST FLIGHTS
██████████████████████
│ │ │ │
▼ ▼ ▼ ▼
F1 F2 F3 IOC
════════════════════════════════════════════════════════════════════════════════
KEY MILESTONES:
• Year 2: Preliminary Design Review (PDR)
• Year 3: Critical Design Review (CDR)
• Year 5: AR-1 Engine Qualification Complete
• Year 7: First Integrated Test Flight
• Year 9: Initial Operational Capability (IOC)
• Year 10: Full Operational Capability - Mars Mission Ready9.3 Cost Estimate
| Category | Cost (USD) | Notes |
|---|---|---|
| **Development (Non-Recurring)** | ||
| AR-1/AR-2 Engine Development | $4.5 B | 9 years, includes test stands |
| Vehicle Development | $8.2 B | All stages, integration |
| Ground Systems | $3.8 B | Pads, VAB, processing facilities |
| Flight Test Campaign | $2.5 B | 5 test flights |
| Program Management | $1.5 B | 10 years |
| **Total Development** | **$20.5 B** | |
| **Production (Recurring)** | ||
| Booster Set (×2) | $180 M | Reusable, amortized over 10 flights |
| Core Stage | $250 M | Reusable, amortized over 5 flights |
| Upper Stage | $85 M | Expendable |
| Fairing | $15 M | Expendable |
| Integration & Ops | $40 M | Per launch |
| **Cost per Flight (Reusable)** | **$115 M** | ~$800/kg to LEO |
| **Cost per Flight (Expendable)** | **$390 M** | ~$2,400/kg to LEO |
10. Comparison with Alternatives
| Parameter | ARES-VII | SpaceX Starship | SLS Block 2 | Long March 9 |
|---|---|---|---|---|
| LEO Capacity | 165 t | 150+ t* | 130 t | 150 t |
| Reusability | Partial | Full | None | Partial |
| Dev Cost | $20.5 B | ~$5 B | $23 B | ~$15 B |
| Cost/kg LEO | $800 | ~$200* | $4,000+ | ~$1,500 |
| Dev Timeline | 10 years | 5 years | 15 years | 12 years |
| TRL (2024) | 3 | 7 | 8 | 4 |
| Fairing Dia. | 10 m | 9 m | 8.4 m | 10 m |
*Projected with full reusability achieved
11. Risk Register
| Risk ID | Risk Description | Probability | Impact | Mitigation | Status |
|---|---|---|---|---|---|
| R-01 | AR-1 engine development delays | Medium | High | Parallel backup engine study | 🟡 Watch |
| R-02 | Crossfeed system complexity | Medium | Medium | Fallback to non-crossfeed config | 🟡 Watch |
| R-03 | 9m tank manufacturing yield | Low | High | Multiple supplier qualification | 🟢 Controlled |
| R-04 | Launch site construction delays | Medium | Medium | Existing infrastructure adaptation | 🟡 Watch |
| R-05 | Cost growth exceeds budget | Medium | High | Design-to-cost methodology | 🟡 Watch |
| R-06 | Reusability targets not met | Medium | Low | Expendable mode maintains capability | 🟢 Controlled |
| R-07 | Regulatory/environmental delays | Low | Medium | Early engagement with authorities | 🟢 Controlled |
12. Deliverables & Success Criteria
12.1 Key Performance Parameters (KPP)
| KPP | Threshold | Objective | Verification Method |
|---|---|---|---|
| LEO Payload | ≥150 t | 165 t | Flight demonstration |
| Fairing Volume | ≥2,500 m³ | 3,100 m³ | Design analysis |
| Reliability | ≥0.97 | 0.99 | Statistical analysis |
| Launch Cadence | ≥6/year | 12/year | Operational demonstration |
| Reuse Turnaround | ≤30 days | 14 days | Operational demonstration |
| Cost per Flight | ≤$150 M | $115 M | Program accounting |
12.2 Task Completion Checklist
[x] Mission requirements defined (40+ colonists, permanent habitation)
[x] Vehicle architecture selected (parallel staging with crossfeed)
[x] Propulsion system designed (AR-1/AR-2 methalox engines)
[x] Stage designs completed (boosters, core, upper stage)
[x] Mass budget established (4,850 t liftoff, 165 t payload)
[x] Flight profile analyzed (ascent, staging, orbit insertion)
[x] Ground systems specified (launch complex, recovery)
[x] Reliability analysis completed (99.2% single-flight)
[x] Development schedule created (10-year program)
[x] Cost estimate prepared ($20.5 B development)
[x] Risk register populated (7 risks identified)
13. Next Steps & Integration Points
13.1 Immediate Follow-on Tasks
1. **Engine Development RFP** - Release request for proposals for AR-1 engine full-scale development
2. **Pathfinder Tank Article** - Commission 9m diameter tank test article fabrication
3. **Ground System PDR** - Initiate preliminary design review for launch complex
4. **Crossfeed Demonstrator** - Fund ground-based crossfeed system demonstration
13.2 Integration with Mars Mission Architecture
ARES-VII INTEGRATION WITH MARS TRANSPORT SYSTEM
════════════════════════════════════════════════════════════════════════════
MARS MISSION LAUNCH CAMPAIGN
┌─────────────────────────────────────┐
│ │
LAUNCH 1 │ Cargo: Mars Surface Habitat │ ARES-VII #1
(T-24 months) │ Mass: 95 t │ Expendable Mode
│ │
├─────────────────────────────────────┤
│ │
LAUNCH 2 │ Cargo: ISRU + Power Systems │ ARES-VII #2
(T-22 months) │ Mass: 85 t │ Expendable Mode
│ │
├─────────────────────────────────────┤
│ │
LAUNCH 3 │ Cargo: Descent Vehicle #1 │ ARES-VII #3
(T-6 months) │ Mass: 85 t │ Reusable Mode
│ │
├─────────────────────────────────────┤
│ │
LAUNCH 4 │ Cargo: Descent Vehicle #2
User:I am working on this task: "Design Interplanetary Transportation System" - Develop the complete transportation architecture capable of delivering 40+ humans and essential cargo to Mars. This includes designing or selecting super-heavy lift vehicles, crew transfer vehicles, Mars descent/ascent craft, and establishing orbital assembly procedures. Must account for the massive payload requirements including life support, consumables, and initial colony infrastructure for 40 colonists.
Please help me complete this specific subtask: "Engineer Mars Transit Vehicle with 6-month life support for 40+ crew"
Be thorough and detailed in your response.
AI:The user is asking me to help design a Mars Transit Vehicle (MTV) capable of supporting 40+ crew mem...