Quest Master Plan: Super-Heavy Lift Vehicle Design

ARES-VII Heavy Launch System

4,005 words
~21 min read
Contains SVG Diagrams
Contains Technical Diagrams
1 AI Thinking Trace

# Quest Master Plan: Super-Heavy Lift Vehicle Design

ARES-VII Heavy Launch System

150+ Metric Ton LEO Payload Capacity


📋 Executive Summary

ParameterSpecification
**Designation**ARES-VII (Advanced Reusable Earth-to-Space VII)
**Payload to LEO (400km)**165 metric tons (expendable) / 145 metric tons (reusable)
**Payload to Mars Transfer Orbit**45 metric tons (with orbital refueling)
**Total Lift-off Mass**4,850 metric tons
**Height**128 meters
**Core Diameter**9 meters
**Target Cost per kg to LEO**$800 (reusable) / $2,400 (expendable)
**Development Timeline**8-10 years

1. Mission Requirements Analysis

1.1 Derived Requirements from Mars Mission Architecture

MARS COLONY MISSION REQUIREMENTS (40+ Colonists)
├── Crew Transfer Vehicle Mass: ~120 metric tons (dry)
├── Mars Descent Vehicle Mass: ~85 metric tons each (×2 required)
├── Initial Habitat Modules: ~95 metric tons
├── Life Support Systems: ~40 metric tons
├── Power Generation (Nuclear): ~35 metric tons
├── ISRU Equipment: ~25 metric tons
├── Consumables (2-year supply): ~60 metric tons
├── Surface Vehicles: ~30 metric tons
├── Science/Medical Equipment: ~20 metric tons
└── Contingency/Spares: ~50 metric tons
────────────────────────────────────────────────
TOTAL TO LEO (before assembly): ~560 metric tons minimum
LAUNCHES REQUIRED: 4-5 (with 150t capacity)

1.2 Key Performance Requirements

RequirementTargetThresholdRationale
LEO Payload165 t150 tSingle-launch habitat delivery
Payload Fairing Diameter10 m8.4 mHabitat module dimensions
Payload Fairing Height25 m20 mCrew vehicle integration
Launch Cadence12/year6/yearMars window support
Reusability10 flights5 flightsCost reduction
Pad Turnaround14 days30 daysCampaign tempo

2. Vehicle Architecture

2.1 Configuration Trade Study

CONFIGURATION OPTIONS ANALYZED
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Option A: Parallel Staging (Side Boosters + Core)
├── Pros: Proven architecture, throttle control, abort options
├── Cons: Complex separation, integration costs
└── Heritage: Saturn V, SLS, Falcon Heavy

Option B: Serial Staging (Tandem Stack)  
├── Pros: Simpler integration, cleaner aerodynamics
├── Cons: Larger single stages, transport challenges
└── Heritage: N1, Starship/Super Heavy

Option C: Hybrid (Core + Crossfeed Boosters) ◄── SELECTED
├── Pros: Optimal performance, reusability friendly
├── Cons: Crossfeed complexity
└── Heritage: Evolved from Falcon Heavy concepts

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

2.2 Selected Architecture: ARES-VII

ARES-VII SUPER-HEAVY LIFT VEHICLE 165 Metric Ton LEO Capacity | 128m Height | 4,850t Liftoff Mass 128 m 9.0 m Core 23.5 m Total Width Payload Fairing (10m × 25m) Upper Stage: 3× AR-2 Engines Vacuum Optimized, 1,200 kN each Core Stage: 9× AR-1 Engines LOX/CH4, 2,400 kN each Side Boosters (×2) 7× AR-1 each, Crossfeed capable Grid fins + Landing legs PERFORMANCE LEO (400km): 165 t GTO: 68 t TLI: 52 t TMI (Direct): 45 t Liftoff Thrust: 55.2 MN T/W Ratio: 1.16 Total Δv: 10.2 km/s Propellant Crossfeed PROPELLANTS LOX (Oxidizer) LCH4 (Fuel) Crossfeed Lines

3. Propulsion System Design

3.1 Engine Selection: AR-1 "Prometheus"

The AR-1 is a new-development, full-flow staged combustion methalox engine optimized for both sea-level and vacuum operations with deep throttling capability for propulsive landing.

ParameterAR-1 (Sea Level)AR-2 (Vacuum)
**Propellants**LOX/LCH₄LOX/LCH₄
**Thrust (100%)**2,400 kN1,200 kN
**Specific Impulse**350 s380 s
**Chamber Pressure**300 bar280 bar
**Throttle Range**40-100%60-100%
**Mixture Ratio**3.6:13.6:1
**Engine Mass**1,850 kg980 kg
**Thrust/Weight**132125
**Restart Capability**10 cycles5 cycles
**Service Life**20 flights15 flights

3.2 Engine Configuration by Stage

┌─────────────────────────────────────────────────────────────────────┐
│                    PROPULSION ARCHITECTURE                          │
├─────────────────────────────────────────────────────────────────────┤
│                                                                     │
│  SIDE BOOSTERS (×2)          CORE STAGE          UPPER STAGE       │
│  ─────────────────           ──────────          ───────────       │
│                                                                     │
│   ● ● ●                      ● ● ●                   ●             │
│    ● ● ●                    ● ● ●                  ● ●             │
│     ●                        ● ● ●                                  │
│                                ●                                    │
│                                                                     │
│  7× AR-1 Engines            9× AR-1 Engines      3× AR-2 Engines   │
│  16,800 kN per booster      21,600 kN total      3,600 kN total    │
│  33,600 kN combined                                                 │
│                                                                     │
│  TOTAL LIFTOFF THRUST: 55,200 kN (5,629 tonnes-force)              │
│                                                                     │
└─────────────────────────────────────────────────────────────────────┘

3.3 Propellant Crossfeed System

The crossfeed system transfers propellant from boosters to core during ascent, allowing the core to reach staging with nearly full tanks.

CROSSFEED SEQUENCE TIMELINE
════════════════════════════════════════════════════════════════════

T+0s          T+90s         T+150s        T+180s        T+480s
│             │             │             │             │
▼             ▼             ▼             ▼             ▼
┌─────────────┬─────────────┬─────────────┬─────────────┬──────────┐
│   LIFTOFF   │  CROSSFEED  │  BOOSTER    │    CORE     │  UPPER   │
│             │   ACTIVE    │ SEPARATION  │   BURNS     │  STAGE   │
│ All engines │ Boosters    │ Boosters    │ Core at 92% │ 3× AR-2  │
│ at 100%     │ feed core   │ RTLS burn   │ propellant  │ ignites  │
│             │ stage       │ begins      │ remaining   │          │
└─────────────┴─────────────┴─────────────┴─────────────┴──────────┘

CROSSFEED BENEFIT:
├── Without Crossfeed: Core staging at 35% propellant → 142t to LEO
└── With Crossfeed:    Core staging at 92% propellant → 165t to LEO
                       ▲
                       └── +23 metric tons capability (+16%)

4. Stage Design Details

4.1 Side Boosters (Quantity: 2)

ParameterValue
**Length**68 m
**Diameter**5.5 m
**Dry Mass**42,000 kg
**Propellant Mass**780,000 kg
**Mass Ratio**19.6
**Engines**7× AR-1
**Burn Time**~150 s
**Recovery Method**Propulsive RTLS

**Reusability Features:**

Grid fins (4×) for aerodynamic control during descent

Deployable landing legs (4×) with crush-core attenuators

Heat-resistant TPS on leading edges

Autonomous flight termination system

Dedicated landing propellant reserve (8% of capacity)

4.2 Core Stage

ParameterValue
**Length**78 m
**Diameter**9.0 m
**Dry Mass**95,000 kg
**Propellant Mass**2,100,000 kg
**Mass Ratio**23.1
**Engines**9× AR-1
**Burn Time**~330 s (with crossfeed)
**Recovery Method**Downrange barge landing

**Structural Design:**

Aluminum-lithium 2195 alloy tank walls

Composite intertank and skirt structures

Common bulkhead between LOX and LCH₄ tanks

Integrated autogenous pressurization (gaseous methane/oxygen)

4.3 Upper Stage

ParameterValue
**Length**18 m
**Diameter**8.4 m
**Dry Mass**18,000 kg
**Propellant Mass**280,000 kg
**Mass Ratio**16.6
**Engines**3× AR-2
**Burn Time**580 s (max)
**Coast Capability**6 hours (extended: 24 hours)

**Upper Stage Features:**

Active thermal management for long-coast missions

Helium pressurization with cold-gas RCS

Multiple restart capability for complex orbit insertion

Optional upgrade to in-space refueling compatibility

4.4 Payload Fairing

ParameterValue
**Outer Diameter**10.0 m
**Usable Diameter**9.4 m
**Length Options**20m / 25m / 30m
**Material**Carbon composite sandwich
**Separation System**Pneumatic pushers with frangible joints
**Acoustic Attenuation**-8 dB (blankets optional: -12 dB)

5. Mass Budget


6. Flight Profile & Performance

6.1 Ascent Trajectory Timeline

ARES-VII ASCENT PROFILE TO 400km LEO
══════════════════════════════════════════════════════════════════════════════

TIME        EVENT                           ALT       VEL      ACCEL   STATUS
──────────────────────────────────────────────────────────────────────────────
T-00:00:10  Engine ignition sequence        0 km      0 m/s    0 g     
T+00:00:00  LIFTOFF                         0 km      0 m/s    1.16 g  ▓▓▓▓▓▓▓▓
T+00:00:07  Tower clear                     0.2 km    45 m/s   1.2 g   
T+00:00:58  Max-Q (throttle down)           12 km     420 m/s  2.8 g   ▓▓▓▓░░░░
T+00:01:10  Throttle up                     18 km     580 m/s  3.2 g   ▓▓▓▓▓▓▓▓
T+00:02:30  BOOSTER SEPARATION              52 km     1,850 m/s 0.5 g  ⚡ STAGING
T+00:02:33  Booster boost-back burn start   54 km     1,820 m/s -1.2 g 
T+00:03:00  Fairing separation              85 km     2,400 m/s 3.5 g  ⚡ JETTISON
T+00:05:30  MECO (Core burnout)             145 km    4,200 m/s 0 g    ⚡ STAGING
T+00:05:35  Stage separation                146 km    4,180 m/s 0 g    
T+00:05:40  Upper stage ignition            147 km    4,150 m/s 0.8 g  ▓▓▓▓▓▓░░
T+00:06:30  Boosters land at LZ-1/LZ-2      0 km      0 m/s    1.0 g   ✓ LANDED
T+00:07:45  Core stage lands on ASDS        0 km      0 m/s    1.0 g   ✓ LANDED
T+00:09:25  SECO-1 (parking orbit)          200 km    7,780 m/s 0 g    ○ COAST
T+00:45:00  Upper stage restart (circ.)     200 km    7,780 m/s 0.9 g  ▓▓▓▓░░░░
T+00:48:30  SECO-2 (orbit achieved)         400 km    7,670 m/s 0 g    ★ MISSION
T+00:52:00  Payload deployment              400 km    7,670 m/s 0 g    ✓ SUCCESS

══════════════════════════════════════════════════════════════════════════════

6.2 Delta-V Budget

┌─────────────────────────────────────────────────────────────────────────────┐
│                         DELTA-V BUDGET (165t to LEO)                        │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                             │
│   Boosters + Core (Parallel)                                                │
│   ████████████████████████████████████████████░░░░░░  4,200 m/s            │
│                                                                             │
│   Upper Stage                                                               │
│   ████████████████████████████████████████████████░░  5,400 m/s            │
│                                                                             │
│   ─────────────────────────────────────────────────────────────            │
│   Total Δv Capability:                              9,600 m/s              │
│                                                                             │
│   LOSSES:                                                                   │
│   ├── Gravity losses:      -1,450 m/s                                      │
│   ├── Drag losses:           -180 m/s                                      │
│   └── Steering losses:       -120 m/s                                      │
│   ─────────────────────────────────────────────────                        │
│   NET Δv for orbit:                                 7,850 m/s              │
│                                                                             │
│   Required for 400km circular LEO:                  7,780 m/s   ✓          │
│   Margin:                                              70 m/s   (0.9%)     │
│                                                                             │
└─────────────────────────────────────────────────────────────────────────────┘

7. Ground Systems & Infrastructure

7.1 Launch Site Requirements

LAUNCH COMPLEX ARES (LCA) SPECIFICATIONS
═══════════════════════════════════════════════════════════════════════════

┌─────────────────────────────────────────────────────────────────────────┐
│                                                                         │
│    [VAB]════════════[CRAWLER WAY]════════════[PAD-A]                   │
│      │                    │                      │                      │
│      │                    │                      ├── Flame Trench       │
│      │                    │                      ├── Sound Suppression  │
│      │                    │                      ├── Lightning Towers   │
│      │                    │                      └── Crew Access Arm    │
│      │                    │                                             │
│      │              [PROP STORAGE]                                      │
│      │              ├── LOX: 15,000 m³                                  │
│      │              ├── LCH4: 12,000 m³                                 │
│      │              └── RP-1 (backup): 2,000 m³                         │
│      │                                                                  │
│   [HIF]────────────[RUNWAY]                                             │
│   Horizontal                                                            │
│   Integration                                                           │
│   Facility        [LZ-1]    [LZ-2]                                     │
│                   Booster   Booster                                     │
│                   Landing   Landing                                     │
│                                                                         │
└─────────────────────────────────────────────────────────────────────────┘

KEY FACILITIES:
───────────────
• Vertical Assembly Building (VAB): 180m tall, dual high-bay
• Mobile Launch Platform (MLP): 3,500 t capacity crawler-transporter
• Launch Pad A/B: Dual-pad complex with shared propellant storage
• Landing Zones 1 & 2: Autonomous booster recovery, 1.5 km from pad
• Autonomous Spaceport Drone Ship (ASDS): Core stage downrange recovery

7.2 Launch Campaign Timeline

PhaseDurationActivities
**Booster Processing**7 daysInspection, refurbishment, testing
**Core Processing**10 daysFull checkout, tank inspection
**Upper Stage Processing**5 daysEngine checks, avionics validation
**Stage Stacking**3 daysVertical integration in VAB
**Payload Integration**2 daysEncapsulation and mating
**Rollout**1 dayTransport to pad
**Pad Operations**3 daysConnection, testing, propellant loading
**Launch**1 dayFinal countdown and liftoff
**TOTAL****32 days**(Target: 21 days with parallel processing)

8. Reliability & Safety

8.1 Failure Mode Analysis

8.2 Abort Modes

PhaseAbort ModeActionCrew Outcome
**Pad**Pad AbortLES fires, crew capsule to ocean splashdownNominal recovery
**T+0 to T+30s**Mode 1 AbortLES fires, ballistic arc to oceanNominal recovery
**T+30s to T+150s**Mode 1-CLES + capsule propulsion, controlled descentNominal recovery
**T+150s to T+330s**Mode 2Crew vehicle separation, direct abort orbitContingency orbit
**T+330s+**Mode 3Continue to orbit with degraded performanceMission continuation

9. Development Program

9.1 Technology Readiness Assessment

TechnologyCurrent TRLRequired TRLGap Closure
AR-1 Engine49Full-scale engine dev program
Crossfeed System38Ground demonstrator + test flights
9m Diameter Tanks59Pathfinder article fabrication
Propulsive Landing89Flight heritage extension
Grid Fins (Scale)79Subscale→full scale testing
Autonomous ASDS Landing89Operational refinement

9.2 Development Schedule

ARES-VII DEVELOPMENT TIMELINE
════════════════════════════════════════════════════════════════════════════════

YEAR        1      2      3      4      5      6      7      8      9     10
           ├──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤

PHASE A: CONCEPT STUDIES
███████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░

PHASE B: PRELIMINARY DESIGN
       ████████████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░

PHASE C: DETAILED DESIGN
              ████████████████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░

AR-1 ENGINE DEVELOPMENT
    █████████████████████████████████████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
    │         │              │           │
    ▼         ▼              ▼           ▼
    PDR      CDR         1st Test    Qual Complete

BOOSTER PATHFINDER
                   █████████████████████████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
                              │              │
                              ▼              ▼
                        Structural Test   Hop Test

CORE STAGE MANUFACTURING
                         █████████████████████████████░░░░░░░░░░░░░░░░░░░░

UPPER STAGE MANUFACTURING
                              ████████████████████░░░░░░░░░░░░░░░░░░░░░░░░

INTEGRATED TESTING
                                        ███████████████████░░░░░░░░░░░░░░░
                                                   │         │
                                                   ▼         ▼
                                              Stage Test   Green Run

LAUNCH SITE CONSTRUCTION
       ██████████████████████████████████████████████░░░░░░░░░░░░░░░░░░░░░

TEST FLIGHTS
                                                    ██████████████████████
                                                    │    │    │    │
                                                    ▼    ▼    ▼    ▼
                                                   F1   F2   F3  IOC

════════════════════════════════════════════════════════════════════════════════
KEY MILESTONES:
• Year 2: Preliminary Design Review (PDR)
• Year 3: Critical Design Review (CDR)  
• Year 5: AR-1 Engine Qualification Complete
• Year 7: First Integrated Test Flight
• Year 9: Initial Operational Capability (IOC)
• Year 10: Full Operational Capability - Mars Mission Ready

9.3 Cost Estimate

CategoryCost (USD)Notes
**Development (Non-Recurring)**
AR-1/AR-2 Engine Development$4.5 B9 years, includes test stands
Vehicle Development$8.2 BAll stages, integration
Ground Systems$3.8 BPads, VAB, processing facilities
Flight Test Campaign$2.5 B5 test flights
Program Management$1.5 B10 years
**Total Development****$20.5 B**
**Production (Recurring)**
Booster Set (×2)$180 MReusable, amortized over 10 flights
Core Stage$250 MReusable, amortized over 5 flights
Upper Stage$85 MExpendable
Fairing$15 MExpendable
Integration & Ops$40 MPer launch
**Cost per Flight (Reusable)****$115 M**~$800/kg to LEO
**Cost per Flight (Expendable)****$390 M**~$2,400/kg to LEO

10. Comparison with Alternatives

ParameterARES-VIISpaceX StarshipSLS Block 2Long March 9
LEO Capacity165 t150+ t*130 t150 t
ReusabilityPartialFullNonePartial
Dev Cost$20.5 B~$5 B$23 B~$15 B
Cost/kg LEO$800~$200*$4,000+~$1,500
Dev Timeline10 years5 years15 years12 years
TRL (2024)3784
Fairing Dia.10 m9 m8.4 m10 m

*Projected with full reusability achieved


11. Risk Register

Risk IDRisk DescriptionProbabilityImpactMitigationStatus
R-01AR-1 engine development delaysMediumHighParallel backup engine study🟡 Watch
R-02Crossfeed system complexityMediumMediumFallback to non-crossfeed config🟡 Watch
R-039m tank manufacturing yieldLowHighMultiple supplier qualification🟢 Controlled
R-04Launch site construction delaysMediumMediumExisting infrastructure adaptation🟡 Watch
R-05Cost growth exceeds budgetMediumHighDesign-to-cost methodology🟡 Watch
R-06Reusability targets not metMediumLowExpendable mode maintains capability🟢 Controlled
R-07Regulatory/environmental delaysLowMediumEarly engagement with authorities🟢 Controlled

12. Deliverables & Success Criteria

12.1 Key Performance Parameters (KPP)

KPPThresholdObjectiveVerification Method
LEO Payload≥150 t165 tFlight demonstration
Fairing Volume≥2,500 m³3,100 m³Design analysis
Reliability≥0.970.99Statistical analysis
Launch Cadence≥6/year12/yearOperational demonstration
Reuse Turnaround≤30 days14 daysOperational demonstration
Cost per Flight≤$150 M$115 MProgram accounting

12.2 Task Completion Checklist

[x] Mission requirements defined (40+ colonists, permanent habitation)

[x] Vehicle architecture selected (parallel staging with crossfeed)

[x] Propulsion system designed (AR-1/AR-2 methalox engines)

[x] Stage designs completed (boosters, core, upper stage)

[x] Mass budget established (4,850 t liftoff, 165 t payload)

[x] Flight profile analyzed (ascent, staging, orbit insertion)

[x] Ground systems specified (launch complex, recovery)

[x] Reliability analysis completed (99.2% single-flight)

[x] Development schedule created (10-year program)

[x] Cost estimate prepared ($20.5 B development)

[x] Risk register populated (7 risks identified)


13. Next Steps & Integration Points

13.1 Immediate Follow-on Tasks

1. **Engine Development RFP** - Release request for proposals for AR-1 engine full-scale development

2. **Pathfinder Tank Article** - Commission 9m diameter tank test article fabrication

3. **Ground System PDR** - Initiate preliminary design review for launch complex

4. **Crossfeed Demonstrator** - Fund ground-based crossfeed system demonstration

13.2 Integration with Mars Mission Architecture

ARES-VII INTEGRATION WITH MARS TRANSPORT SYSTEM
════════════════════════════════════════════════════════════════════════════

                         MARS MISSION LAUNCH CAMPAIGN
                    ┌─────────────────────────────────────┐
                    │                                     │
    LAUNCH 1        │    Cargo: Mars Surface Habitat      │    ARES-VII #1
    (T-24 months)   │    Mass: 95 t                       │    Expendable Mode
                    │                                     │
                    ├─────────────────────────────────────┤
                    │                                     │
    LAUNCH 2        │    Cargo: ISRU + Power Systems      │    ARES-VII #2
    (T-22 months)   │    Mass: 85 t                       │    Expendable Mode
                    │                                     │
                    ├─────────────────────────────────────┤
                    │                                     │
    LAUNCH 3        │    Cargo: Descent Vehicle #1        │    ARES-VII #3
    (T-6 months)    │    Mass: 85 t                       │    Reusable Mode
                    │                                     │
                    ├─────────────────────────────────────┤
                    │                                     │
    LAUNCH 4        │    Cargo: Descent Vehicle #2

User:I am working on this task: "Design Interplanetary Transportation System" - Develop the complete transportation architecture capable of delivering 40+ humans and essential cargo to Mars. This includes designing or selecting super-heavy lift vehicles, crew transfer vehicles, Mars descent/ascent craft, and establishing orbital assembly procedures. Must account for the massive payload requirements including life support, consumables, and initial colony infrastructure for 40 colonists.

Please help me complete this specific subtask: "Engineer Mars Transit Vehicle with 6-month life support for 40+ crew"

Be thorough and detailed in your response.
AI:
AI Thinking Trace

The user is asking me to help design a Mars Transit Vehicle (MTV) capable of supporting 40+ crew mem...

Created by Erik Bethke in Bike4Mind using the QuestMaster deep agentic flow + Claude Opus 4.5 by Anthropic