Mars Crew Descent Vehicle Design Document
ARES-LANDER (Atmospheric Re-Entry & Surface) Class
# Mars Crew Descent Vehicle Design Document
ARES-LANDER (Atmospheric Re-Entry & Surface) Class
10-Crew Capacity | Precision Landing | Convertible Surface Habitat
📋 Executive Summary
| Parameter | Specification |
|---|---|
| **Designation** | MDV-10 "ARES-LANDER" (Mars Descent Vehicle) |
| **Crew Capacity** | 10 nominal / 12 emergency |
| **Entry Mass** | 48,500 kg (wet) |
| **Landed Mass** | 32,200 kg (dry + crew + cargo) |
| **Cargo Capacity** | 5,000 kg crew equipment + personal |
| **Entry Velocity** | 5.8 km/s (from Mars orbit) |
| **Landing Accuracy** | ≤100 m from target (99% probability) |
| **Descent Duration** | 7-9 minutes (entry interface to touchdown) |
| **Surface Endurance** | 30 days standalone / indefinite with base |
| **Propulsion** | Hypergolic (MMH/NTO) + throttleable RL-Mars engines |
| **Landing System** | 6-leg with terrain adaptive suspension |
| **Fleet Requirement** | 5 vehicles (4 crew + 1 cargo variant) |
1. Mission Requirements & Constraints
1.1 Design Reference Mission Profile
DESCENT MISSION TIMELINE
══════════════════════════════════════════════════════════════════════════════════
T-24:00:00 Crew transfer from MTV to MDV in Mars orbit
T-12:00:00 Systems checkout, suit donning, pre-descent briefing
T-02:00:00 MDV undocking from MTV
T-01:30:00 Separation maneuver, deorbit burn preparation
T-00:10:00 Deorbit ignition (ΔV = 50 m/s)
T-00:00:00 ENTRY INTERFACE (125 km altitude)
════════════════════════════════════════════════
T+00:01:30 Peak heating (48 W/cm², 1,650°C surface)
T+00:03:00 Peak deceleration (4.2g, ~35 km altitude)
T+00:04:00 Supersonic parachute deployment (Mach 2.2, 12 km)
T+00:04:30 Heat shield jettison
T+00:05:15 Subsonic parachute deployment (Mach 0.8, 7 km)
T+00:06:30 Parachute release, powered descent initiation (2 km)
T+00:07:00 Terrain-relative navigation lock
T+00:07:45 Terminal descent phase (100 m)
T+00:08:00 TOUCHDOWN
════════════════════════════════════════════════
T+00:15:00 Post-landing safing, crew status check
T+01:00:00 Crew egress (if immediate EVA required)
T+04:00:00 Habitat mode activation
══════════════════════════════════════════════════════════════════════════════════1.2 Key Design Drivers
| Requirement | Specification | Design Impact |
|---|---|---|
| **Crew Safety** | Loss of crew probability <1:500 | Triple redundancy on critical systems |
| **Entry Corridor** | ±0.5° flight path angle | Precision guidance, lifting entry |
| **G-Loading** | <5g nominal, <8g abort | Structural margins, crew restraints |
| **Landing Site** | Jezero/Syrtis region (18°N) | EDL performance at altitude |
| **Precision** | Land within 100m of beacon | TRN + hazard avoidance |
| **Abort Capability** | Powered abort through T+5:00 | Propellant reserves, guidance |
| **Dust Environment** | Operations in 15 m/s winds | Engine gimbal authority, leg stroke |
1.3 Entry Corridor Analysis
MARS ENTRY CORRIDOR CONSTRAINTS
═══════════════════════════════════════════════════════════════════════════════
Entry Flight Path Angle (γ) at 125 km:
OVERSHOOT UNDERSHOOT
(skip out) NOMINAL CORRIDOR (excessive g-load)
│ │
│ γ = -10° γ = -14° γ = -18°│
│ │ │ │ │
▼ ▼ ▼ ▼ ▼
────┬────────┬─────────────────────┬─────────────────────┬───┬────
│ │ │ │ │
│ │◄──── SAFE ZONE ────►│◄─── ACCEPTABLE ────►│ │
│ │ (±0.5°) │ (±1°) │ │
│ │ │ │ │
│ Decel: 3.5g Decel: 4.2g Decel: 6.5g
│ Heat: 38 W/cm² Heat: 48 W/cm² Heat: 72 W/cm²
│ Range: Long Range: Nominal Range: Short
ARES-LANDER CAPABILITY:
├── Entry corridor width: 1.0° (nominal), 1.8° (max)
├── Guidance: Predictor-corrector with bank angle modulation
├── L/D ratio: 0.24 (sufficient for precision landing)
├── Bank reversals: 2-4 during entry
└── Cross-range capability: ±25 km
═══════════════════════════════════════════════════════════════════════════════2. Vehicle Architecture
2.1 Overall Configuration
2.2 Module Breakdown Structure
ARES-LANDER MDV-10 - MODULE BREAKDOWN
══════════════════════════════════════════════════════════════════════════════════
MDV-10 ARES-LANDER
│
├── AEROSHELL ASSEMBLY (Jettisoned T+4:30)
│ ├── Backshell Structure
│ │ ├── Composite shell (carbon-phenolic)
│ │ ├── SIRCA thermal tiles (interior)
│ │ ├── Parachute mortar housings (×3)
│ │ └── Separation pyrotechnics
│ │
│ ├── Heat Shield Assembly
│ │ ├── PICA-X ablative tiles
│ │ ├── SLA-561V carrier structure
│ │ ├── Bond layer / TPS carrier
│ │ └── Separation mechanism
│ │
│ └── Entry RCS System
│ ├── Hydrazine thrusters (8×)
│ ├── Propellant tanks (×4)
│ └── Attitude control electronics
│
├── PARACHUTE SYSTEM (Released T+6:30)
│ ├── Supersonic Drogue (DGB type)
│ │ ├── Diameter: 25 m
│ │ ├── Deployment: Mach 2.2
│ │ └── Material: Kevlar/Nylon
│ │
│ └── Main Parachutes (×3 ringsail)
│ ├── Diameter: 55 m each
│ ├── Deployment: Mach 0.8
│ └── Material: Vectran
│
├── DESCENT MODULE (Lands on surface)
│ ├── Crew Pressure Vessel
│ │ ├── Upper deck (crew stations)
│ │ ├── Lower deck (systems/storage)
│ │ ├── Windows (×6)
│ │ └── Docking adapter (top)
│ │
│ ├── Propulsion System
│ │ ├── Main engines: 6× RL-Mars (throttleable)
│ │ ├── RCS thrusters: 24× 500N
│ │ ├── Propellant: MMH/NTO
│ │ └── Tank capacity: 12,300 kg
│ │
│ ├── Landing System
│ │ ├── Primary legs (×6)
│ │ ├── Crushable honeycomb
│ │ ├── Terrain adaptive joints
│ │ └── Landing pads (0.5 m diameter)
│ │
│ └── Avionics & GNC
│ ├── Flight computers (×3)
│ ├── TRN cameras (×2)
│ ├── LIDAR altimeter
│ ├── Hazard detection system
│ └── Communications array
══════════════════════════════════════════════════════════════════════════════════2.3 Mass Budget Breakdown
| System | Mass (kg) | % of Entry Mass |
|---|---|---|
| **Aeroshell Assembly** | ||
| - Backshell structure | 2,400 | 4.9% |
| - Heat shield (PICA-X) | 3,800 | 7.8% |
| - Entry RCS | 850 | 1.8% |
| - Parachute system | 1,200 | 2.5% |
| **Subtotal Jettisoned** | **8,250** | **17.0%** |
| **Descent Module (Dry)** | ||
| - Primary structure | 5,200 | 10.7% |
| - Landing gear | 1,800 | 3.7% |
| - Propulsion (dry) | 2,400 | 4.9% |
| - Avionics & GNC | 850 | 1.8% |
| - Thermal control | 600 | 1.2% |
| - Power system | 750 | 1.5% |
| - Life support | 1,200 | 2.5% |
| - Crew accommodations | 800 | 1.6% |
| **Subtotal Module Dry** | **13,600** | **28.0%** |
| **Propellant** | 12,300 | 25.4% |
| **RCS Propellant** | 850 | 1.8% |
| **Crew (10 + suits)** | 1,500 | 3.1% |
| **Cargo & Equipment** | 5,000 | 10.3% |
| **Consumables (30 day)** | 2,500 | 5.2% |
| **Margin (15%)** | 4,500 | 9.3% |
| **TOTAL ENTRY MASS** | **48,500** | **100%** |
| **LANDED MASS** | **32,200** | 66.4% |
3. Entry, Descent & Landing Sequence
3.1 Complete EDL Timeline
3.2 Entry Phase Details
GUIDED ENTRY - BANK ANGLE MODULATION
═══════════════════════════════════════════════════════════════════════════════
The ARES-LANDER uses a lifting body entry with bank angle steering:
LIFT VECTOR
↑
╱│╲
╱ │ ╲ Bank angle (φ) rotates lift vector
╱ │ ╲ around velocity vector
╱ │ ╲
BANK LEFT ←────────●────┼────●────────► BANK RIGHT
(φ = -90°) ╱ │ ╲ (φ = +90°)
╱ │ ╲
▼ │ ▼
Drag/Lift │ Drag/Lift
component │ component
│
VELOCITY VECTOR
(into page)
GUIDANCE LAW:
├── Predictor-corrector algorithm
├── State: Position, velocity from IMU + star tracker
├── Prediction: 3-DOF trajectory integration
├── Correction: Bank angle command to null range error
├── Update rate: 10 Hz
└── Bank reversal logic: Cross-range deadband
PERFORMANCE:
├── L/D ratio: 0.24 (capsule with offset CG)
├── Ballistic coefficient: 120 kg/m²
├── Cross-range capability: ±25 km
├── Down-range control: ±300 km
└── Landing accuracy contribution: ±5 km (3σ)
═══════════════════════════════════════════════════════════════════════════════3.3 Thermal Protection System
| Component | Material | Max Temp | Thickness | Mass |
|---|---|---|---|---|
| **Forebody Heat Shield** | PICA-X | 1,650°C | 6.8 cm avg | 3,200 kg |
| **Shoulder Region** | SLA-561V | 1,400°C | 4.2 cm | 350 kg |
| **Backshell** | SIRCA tiles | 1,200°C | 2.5 cm | 250 kg |
| **Total TPS** | **3,800 kg** |
PICA-X HEAT SHIELD DESIGN
═══════════════════════════════════════════════════════════════════════════════
┌──────────────────────────────────────────────────────────────────┐
│ PICA-X TILE LAYOUT │
│ (8.5 m diameter) │
│ │
│ ╭───────╮ │
│ ╭────│ APEX │────╮ │
│ ╭────│ │ 8.2cm │ │────╮ │
│ ╭────│ │ ╰───────╯ │ │────╮ │
│ ╭────│ │ │ │ │ │────╮ │
│ ╭────│ │ │ │ │ │ │ │────╮ │
│ │ 4.5│ 5.2│ 5.8│ 6.4│ 6.8 │ 6.4│ 5.8│ 5.2│ 4.5│ │
│ │ cm │ cm │ cm │ cm │ cm │ cm │ cm │ cm │ cm │ │
│ ╰────│ │ │ │ (stagnation) │ │ │ │────╯ │
│ ╰────│ │ │ │ │ │────╯ │
│ ╰────│ │ │ │────╯ │
│ ╰────│ │────╯ │
│ ╰─────────────────╯ │
│ SHOULDER │
│ │
│ Material: Phenolic Impregnated Carbon Ablator (SpaceX variant) │
│ Tile size: 0.5m × 0.5m (gap-filled during installation) │
│ Total tiles: 227 (hexagonal packing) │
│ Recession rate: 0.3 mm/s at peak heating │
│ Total recession: ~12 mm (safety factor 5×) │
│ │
└──────────────────────────────────────────────────────────────────┘
THERMAL PROFILE:
├── Peak heat flux: 48 W/cm² (at stagnation point)
├── Total heat load: 12,500 J/cm²
├── Peak surface temp: 1,650°C
├── Bondline temp limit: 260°C
├── Predicted bondline temp: 180°C (margin: 80°C)
└── Backface temp at jettison: 85°C
═══════════════════════════════════════════════════════════════════════════════4. Propulsion System
4.1 Engine Specifications
<artifact identifier="propulsion-system" type="image/svg+xml" title="ARES-LANDER Propulsion System Layout">