# Earth Orbital Assembly & Departure Staging Operations
MARS TRANSIT VEHICLE (MTV) ASSEMBLY CAMPAIGN
Mission: ARES-I Colony Fleet | 44 Crew | Assembly in LEO
📋 Executive Summary
| Parameter | Specification |
|---|
| **Assembly Orbit** | 400 km × 51.6° (ISS-compatible) |
| **Assembly Duration** | 14 months (Launches) + 2 months (Integration) |
| **Total Launches Required** | 28 super-heavy + 12 medium-lift |
| **Assembled Mass (Dry)** | 1,850 metric tons |
| **Assembled Mass (Wet)** | 4,200 metric tons (with propellant) |
| **Vehicle Length** | 312 meters (fully assembled) |
| **Crew Arrival** | L-21 days before TMI |
| **Departure Window** | 26-day optimal window |
| **Trans-Mars Injection ΔV** | 3.6 km/s |
| **TMI Burn Duration** | 45 minutes (3 burns over 2 orbits) |
1. Assembly Orbit Selection & Rationale
1.1 Orbit Trade Study
ASSEMBLY ORBIT TRADE ANALYSIS
══════════════════════════════════════════════════════════════════════════════════
CANDIDATE ORBITS EVALUATED:
┌─────────────────┬────────────┬────────────┬─────────────┬─────────────────────┐
│ Orbit │ Altitude │ Incl. │ ΔV to TMI │ Pros / Cons │
├─────────────────┼────────────┼────────────┼─────────────┼─────────────────────┤
│ ISS Orbit │ 400 km │ 51.6° │ 3.60 km/s │ ✓ ISS backup │
│ │ │ │ │ ✓ Proven ops │
│ │ │ │ │ ✗ Higher ΔV │
├─────────────────┼────────────┼────────────┼─────────────┼─────────────────────┤
│ Low Incl. LEO │ 400 km │ 28.5° │ 3.45 km/s │ ✓ Optimal ΔV │
│ │ │ │ │ ✗ KSC only launch │
│ │ │ │ │ ✗ No ISS backup │
├─────────────────┼────────────┼────────────┼─────────────┼─────────────────────┤
│ Sun-Sync │ 800 km │ 98.7° │ 4.10 km/s │ ✓ Stable thermal │
│ │ │ │ │ ✗ Much higher ΔV │
│ │ │ │ │ ✗ Debris concerns │
├─────────────────┼────────────┼────────────┼─────────────┼─────────────────────┤
│ Highly Ellip. │ 400×35786 │ 28.5° │ 2.40 km/s │ ✓ Lowest TMI ΔV │
│ (GTO-like) │ │ │ │ ✗ Complex assembly │
│ │ │ │ │ ✗ Radiation │
├─────────────────┼────────────┼────────────┼─────────────┼─────────────────────┤
│ Lunar Gateway │ NRHO │ Polar │ 0.80 km/s │ ✓ Minimal TMI │
│ │ │ │ │ ✗ Very high launch │
│ │ │ │ │ ✗ Long transit │
└─────────────────┴────────────┴────────────┴─────────────┴─────────────────────┘
SELECTED: ISS-COMPATIBLE ORBIT (400 km × 51.6°)
RATIONALE:
├── Emergency crew return via Crew Dragon to ISS if needed
├── Proven assembly operations heritage (ISS experience)
├── Multiple launch site accessibility (KSC, Baikonur, Kourou)
├── Acceptable ΔV penalty (+150 m/s vs optimal)
├── Established ground infrastructure and procedures
└── Debris environment well-characterized
══════════════════════════════════════════════════════════════════════════════════
1.2 Assembly Orbit Parameters
| Parameter | Value | Notes |
|---|
| **Semi-major Axis** | 6,778 km | 400 km altitude |
| **Eccentricity** | 0.0001 | Near-circular |
| **Inclination** | 51.6° | ISS-compatible |
| **RAAN** | Variable | Phased with departure |
| **Orbital Period** | 92.5 minutes | 15.6 orbits/day |
| **Eclipse Duration** | ~35 min/orbit | Max thermal cycling |
| **Debris Avoidance** | Active tracking | USSPACECOM coordination |
2. Vehicle Architecture for Assembly
2.1 MTV Modular Breakdown
2.2 Launch Vehicle Requirements
LAUNCH VEHICLE MANIFEST
══════════════════════════════════════════════════════════════════════════════════
PRIMARY LAUNCH VEHICLE: ARES-VII Super-Heavy Lift
├── Payload to 400 km × 51.6°: 150 metric tons
├── Payload fairing: 12 m diameter × 30 m length
├── Launch cadence: 2 per month (surge capability)
├── Launch sites: KSC LC-39A/B, Boca Chica
└── Reusability: First stage (10+ flights), Second stage (3 flights)
SECONDARY VEHICLE: CREW TRANSIT SYSTEM (CTS)
├── Crew capacity: 12 per flight
├── Vehicle: Enhanced Crew Dragon / Starship Crew
├── Launch vehicle: Falcon Heavy / ARES-VII
└── Role: Crew delivery to MTV (4 flights × 11 crew)
PROPELLANT TANKER: ARES-VII TANKER VARIANT
├── Propellant delivery: 120 t per flight
├── LH2/LOX for NTR stages
├── MMH/NTO for RCS/backup
└── Required flights: 20 tanker missions
┌──────────────────────────────────────────────────────────────────────────────┐
│ COMPLETE LAUNCH MANIFEST │
├──────────────┬──────────┬──────────────┬───────────────────────────────────────┤
│ Launch # │ Vehicle │ Payload (t) │ Payload Description │
├──────────────┼──────────┼──────────────┼───────────────────────────────────────┤
│ L-01 │ ARES-VII │ 145 │ Central Hub Module │
│ L-02 │ ARES-VII │ 140 │ Main Truss Segment A │
│ L-03 │ ARES-VII │ 140 │ Main Truss Segment B + Solar Array 1 │
│ L-04 │ ARES-VII │ 135 │ Power Module + Solar Array 2 │
├──────────────┼──────────┼──────────────┼───────────────────────────────────────┤
│ L-05 to L-12 │ ARES-VII │ 65 each │ Habitat Modules A1-D2 (8 modules) │
├──────────────┼──────────┼──────────────┼───────────────────────────────────────┤
│ L-13 │ ARES-VII │ 150 │ Propulsion Module Core │
│ L-14 │ ARES-VII │ 145 │ NTR Engine Package (3 engines) │
│ L-15 │ ARES-VII │ 140 │ TMI Stage 1 (tanks + structure) │
│ L-16 │ ARES-VII │ 140 │ TMI Stage 2 (tanks + structure) │
│ L-17 │ ARES-VII │ 130 │ Chemical Backup Propulsion │
│ L-18 │ ARES-VII │ 120 │ RCS Module + Attitude Control │
├──────────────┼──────────┼──────────────┼───────────────────────────────────────┤
│ L-19 to L-23 │ ARES-VII │ 50 each │ MDV-10 Descent Vehicles (5 units) │
│ L-24 │ ARES-VII │ 80 │ Cargo Pod + Surface Equipment │
├──────────────┼──────────┼──────────────┼───────────────────────────────────────┤
│ L-25 to L-28 │ ARES-VII │ 50 each │ Propellant Depot Modules (4 tanks) │
├──────────────┼──────────┼──────────────┼───────────────────────────────────────┤
│ T-01 to T-20 │ Tanker │ 120 each │ Propellant Delivery (2,400 t total) │
├──────────────┼──────────┼──────────────┼───────────────────────────────────────┤
│ C-01 to C-04 │ CTS │ 11 crew │ Crew Delivery (44 total) │
└──────────────┴──────────┴──────────────┴───────────────────────────────────────┘
══════════════════════════════════════════════════════════════════════════════════
3. Assembly Sequence & Procedures
3.1 Phase 1: Foundation (Months 1-3)
3.2 Robotic Assembly Operations
ROBOTIC ASSEMBLY SYSTEM - HERMES-ARM
══════════════════════════════════════════════════════════════════════════════════
PRIMARY MANIPULATOR: HERMES-ARM (Based on Canadarm2/ERA heritage)
├── Reach: 22 meters (extended)
├── Payload capacity: 150,000 kg (in microgravity)
├── Degrees of freedom: 7 + end effector
├── Positioning accuracy: ±2 mm
├── End effectors:
│ ├── Grapple fixture interface
│ ├── Common berthing mechanism tool
│ └── Inspection camera suite
└── Control: Autonomous + ground-commanded + crew override
ASSEMBLY SEQUENCE FOR TYPICAL MODULE BERTHING:
─────────────────────────────────────────────────
T-2:00:00 Incoming module at hold point (200 m aft)
│
T-1:30:00 ▼ GO for approach
Module initiates R-bar approach
Rate: 0.1 m/s closing velocity
│
T-0:30:00 ▼ Hold point 2 (30 m)
Systems verification, lighting check
HERMES-ARM pre-positioning
│
T-0:10:00 ▼ Final approach
Rate: 0.03 m/s
Relative navigation lock
│
T-0:02:00 ▼ Capture envelope (10 m)
Module station-keeping
ARM grapple operation
│
T-0:00:00 ▼ CAPTURE
════════════════════════
Module thrusters inhibited
ARM has control
│
T+0:15:00 ▼ Translation to berth port
ARM maneuvers module
Fine alignment sensors active
│
T+0:45:00 ▼ Soft dock
Alignment guides engaged
Bolt driving sequence
│
T+1:30:00 ▼ Hard dock
16 bolts torqued to spec
Seal verification
│
T+2:00:00 ▼ Utility connection
Power umbilicals mated
Data lines connected
Fluid lines connected
│
T+4:00:00 ▼ Vestibule pressurization
Leak check
Hatch opening
│
T+6:00:00 ▼ Module activation
Systems power-up
Integration complete
BERTHING PORTS (Common Berthing Mechanism - Enhanced):
├── Forward Hub: 4 radial + 1 axial (for habitats/modules)
├── Aft Hub: 2 radial + 1 axial (propulsion interface)
├── Truss: 8 utility ports (along length)
├── Propulsion: 1 axial (depot interface)
└── Port diameter: 2.0 m (crew/cargo transfer)
══════════════════════════════════════════════════════════════════════════════════
3.3 Phase 2: Habitation Installation (Months 4-7)
HABITAT MODULE INSTALLATION SEQUENCE
══════════════════════════════════════════════════════════════════════════════════
The MTV uses a counter-rotating dual-ring design for artificial gravity.
8 habitat modules are installed as 4 pairs on opposite sides of the truss.
ROTATION ARCHITECTURE:
┌─────────────────────────────────────────────┐
│ COUNTER-ROTATION DESIGN │
│ │
│ Ring A (Forward) Ring B (Aft) │
│ ↺ CCW ↻ CW │
│ │
│ HAB-A1 ●────┬────● HAB-C1 │
│ │ │
│ HAB-A2 ●────┼────● HAB-C2 │
│ │ │
│ ══════╪══════ Central Truss │
│ │ (non-rotating) │
│ HAB-B1 ●────┼────● HAB-D1 │
│ │ │
│ HAB-B2 ●────┴────● HAB-D2 │
│ │
│ Rotation rate: 3.8 RPM → 0.38g Mars equiv. │
│ Ring radius: 25 meters (hub to module CG) │
│ │
└─────────────────────────────────────────────┘
INSTALLATION ORDER (optimized for balance):
┌────────┬────────────┬─────────────────┬──────────────────────────────────┐
│ Launch │ Module │ Position │ Notes │
├────────┼────────────┼─────────────────┼──────────────────────────────────┤
│ L-05 │ HAB-A1 │ Ring A, Top │ First habitat, initiates pair │
│ L-06 │ HAB-A2 │ Ring A, Bottom │ Completes balanced pair │
│ L-07 │ HAB-B1 │ Ring A, Top-2 │ Second pair, same ring │
│ L-08 │ HAB-B2 │ Ring A, Bot-2 │ Ring A complete │
│ │ │ │ ──► RING A ROTATION TEST ◄── │
│ L-09 │ HAB-C1 │ Ring B, Top │ Begin counter-rotating ring │
│ L-10 │ HAB-C2 │ Ring B, Bottom │ Balanced pair │
│ L-11 │ HAB-D1 │ Ring B, Top-2 │ Final pair begins │
│ L-12 │ HAB-D2 │ Ring B, Bot-2 │ Ring B complete │
│ │ │ │ ──► DUAL RING ROTATION TEST ◄── │
└────────┴────────────┴─────────────────┴──────────────────────────────────┘
CRITICAL OPERATIONS FOR EACH HABITAT:
1. Berthing to truss-mounted rotating joint
2. Pressurization test (1.2 atm proof pressure)
3. ECLSS activation and atmospheric composition
4. Power/data/thermal umbilical verification
5. Interior outfitting verification
6. Rotation joint lubrication and test
7. Balance mass adjustment (if needed)
ROTATION SYSTEM CHECKOUT:
├── Static balance verification (CG offset < 5 cm)
├── Single module rotation test (0.5 RPM)
├── Pair rotation test (1.0 RPM)
├── Full ring rotation test (2.0 RPM)
├── Counter-rotation synchronization
├── Vibration and dynamics characterization
├── Emergency stop verification
└── Full operational rotation (3.8 RPM)
══════════════════════════════════════════════════════════════════════════════════
3.4 Phase 3-4: Propulsion & Logistics (Months 8-13)
| Launch | Payload | Mass | Key Operations |
|---|
| **L-13** | Propulsion Core | 150 t | NTR support structure, propellant manifolds, gimbal systems |
| **L-14** | NTR Engines (3×) | 145 t | NERVA-II derivative engines, installation, alignment |
| **L-15** | TMI Stage 1 | 140 t | LH2 tank cluster, stage adapter |
| **L-16** | TMI Stage 2 | 140 t | Secondary LH2 tanks, MOI propellant |
| **L-17** | Chemical Backup | 130 t | RL-10 cluster, emergency propulsion |
| **L-18** | RCS Module | 120 t | Attitude control, stationkeeping |
| **L-19-23** | MDV-10 Units (5×) | 50 t each | Mars descent vehicles, docked to MTV |
| **L-24** | Cargo Pod | 80 t | Surface equipment, science gear |
3.5 Phase 5: Propellant Loading (Months 14-16)
PROPELLANT DEPOT OPERATIONS
══════════════════════════════════════════════════════════════════════════════════
PROPELLANT REQUIREMENTS:
┌─────────────────┬────────────┬────────────────┬───────────────────────────────┐
│ Propellant │ Mass (t) │ Storage Temp │ Purpose │
├─────────────────┼────────────┼────────────────┼───────────────────────────────┤
│ Liquid Hydrogen │ 350 │ 20 K │ NTR propellant (TMI + MOI) │
│ Liquid Oxygen │ 1,400 │ 90 K │ Chemical backup propellant │
│ NTO (N2O4) │ 180 │ 294 K │ RCS + MDV propellant │
│ MMH │ 120 │ 294 K │ RCS + MDV propellant │
│ Helium │ 15 │ 4 K │ Pressurant (all systems) │
│ Nitrogen │ 35 │ 77 K │ ECLSS buffer, purge gas │
├─────────────────┼────────────┼────────────────┼───────────────────────────────┤
│ TOTAL │ 2,100 │ │ │
└─────────────────┴────────────┴────────────────┴───────────────────────────────┘
CRYO PROPELLANT TRANSFER PROCEDURE:
──────────────────────────────────────
TANKER VEHICLE MTV DEPOT
┌──────────────┐ ┌──────────────────┐
│ │ Umbilical │ │
│ LH2 Tank │═══════════════════▶│ LH2 Receiver │
│ (120 t) │ (insulated) │ (350 t cap) │
│ │ │ │
└──────────────┘ │ ┌──────────┐ │
│ │ Active │ │
Transfer parameters: │ │ Cooling │ │
├── Flow rate: 50 kg/min │ │ System │ │
├── Transfer time: 40 hours │ └──────────┘ │
├── Boiloff during transfer: <0.5% │ │
├── Chill-down: 2 hours └──────────────────┘
├── Pressure differential: 0.2 bar
└── Verification: Mass flow meters + level sensors
TANKER FLIGHT SEQUENCE:
├── Flights 1-4: Depot modules delivery (L-25 to L-28)
├── Flights T-01 to T-08: LH2 delivery (8 × 45 t = 360 t, accounting for boiloff)
├── Flights T-09 to T-16: LOX delivery (8 × 180 t = 1,440 t)
├── Flights T-17 to T-18: NTO delivery (2 × 90 t = 180 t)
├── Flights T-19 to T-20: MMH + He + N2 (2 × 85 t = 170 t)
└── Reserve flight: Contingency propellant
BOILOFF MANAGEMENT (Critical for LH2):
├── Passive: Multi-layer insulation (50+ layers)
├── Active: Cryo-cooler system (2 kW cooling at 20 K)
├── Vapor recovery: Re-liquefaction at 85% efficiency
├── Daily boiloff rate: <0.1% with active cooling
├── Topping capability: 3 tanker flights held in reserve
└── Loading complete: L-7 days (7 days before crew)
══════════════════════════════════════════════════════════════════════════════════
4. Crew Arrival & Integration
4.1 Crew Transit Profile
<artifact identifier="crew-arrival-timeline" type="image/svg+xml" title="Crew Arrival and Integration Timeline">
Created by Erik Bethke in Bike4Mind using the QuestMaster deep agentic flow + Claude Opus 4.5 by Anthropic