RightMark, a revolutionary copyright verification system, transforms subjective legal disputes into quantifiable metrics, empowering creators, educators, and consumers with transparent, data-driven copyright protection.
Share this post:
Export:
Date: November 2, 2025 Version: 1.0 Prepared for: Erik Bethke & Bike4Mind Platform
RightMark is a revolutionary copyright verification system that uses vector embeddings and cosine similarity in high-dimensional space to objectively measure originality and copyright infringement. It transforms subjective legal disputes into quantifiable metrics, providing creators, educators, legal professionals, and consumers with a transparent, data-driven approach to copyright.
"If you can measure it objectively, you can manage it fairly."
RightMark creates a "bubble of originality" around every creative work. By measuring the distance between works in vector space, it provides:
| Segment | Addressable Market | Pain Point | RightMark Solution | |---------|-------------------|------------|-------------------| | Education | $8B plagiarism detection market | Subjective originality assessment | Objective novelty scoring | | Legal/Courts | $300B copyright litigation | Expensive, subjective disputes | Expert system with quantifiable metrics | | Creative Industries | $2.3T (music, film, gaming, publishing) | Fear of infringement stifles innovation | Clear boundaries encourage creativity | | Content Platforms | $200B+ (YouTube, TikTok, Instagram) | Copyright claims/DMCA overload | Automated verification at scale | | Consumer Protection | 500M+ social media users | Deep fakes, impersonation, content theft | Personal content monitoring |
Total Addressable Market: $50B+ across all segments
How It Works:
Medium-Specific Processing:
text-embedding-3-large, Anthropic embeddings, or specialized literary modelsRightMark supports variable similarity thresholds for different use cases:
| Use Case | Threshold (Similarity Score) | Description | |----------|------------------------------|-------------| | Strict Copyright | > 85% different | Commercial works, full protection | | Fair Use | > 60% different | Educational, commentary, parody | | Public Domain | > 40% different | Open cultural heritage | | Creative Commons | Custom (creator-set) | Per license terms (NC, SA, etc.) | | Derivative Works | 50-75% different | Licensed adaptations | | Academic | > 70% different | Student assignments, research papers |
Creator Dashboard:
┌─────────────────────────────────────────────────────────────┐
│ RightMark Studio [User]│
├─────────────────────────────────────────────────────────────┤
│ │
│ Your Works (23) Alerts (2) Credits: 150 │
│ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ │
│ │
│ 📄 "Quantum Dreams" (Novel) │
│ Originality Score: 94/100 ✓ Certified │
│ Status: Monitoring (Active) │
│ Last Scan: 2 hours ago │
│ ⚠️ 1 potential match found │
│ │
│ 🎵 "Neon Sunset" (Music Track) │
│ Originality Score: 88/100 ✓ Certified │
│ Status: Safe │
│ │
│ [+ Upload New Work] [View Analytics] [Download Reports] │
└─────────────────────────────────────────────────────────────┘
Phase 1: Educational Pilot (Months 1-6)
Phase 2: Legal Expert System (Months 6-12)
Phase 3: Creative Industry Licensing (Months 12-18)
Phase 4: Consumer Platform Launch (Months 18-24)
Phase 5: Platform APIs (Months 24+)
vs. Turnitin/Copyscape (Plagiarism Detection):
vs. Copyright Manual Review:
vs. Content ID (YouTube/Platform-Specific):
Brand Promise: "Know Your Originality. Protect Your Rights."
Messaging Framework:
Marketing Channels:
Content Marketing:
Community Building:
Partnerships:
PR & Thought Leadership:
Problem:
RightMark Solution:
Business Model:
Success Metrics:
Problem:
RightMark Solution:
Business Model:
Success Metrics:
Problem:
RightMark Solution:
Business Model:
Success Metrics:
Bike4Mind already has the entire technology stack needed to build RightMark:
| RightMark Need | Bike4Mind Has | |----------------|---------------| | Vector embeddings | ✅ RAG system with text embeddings | | Similarity search | ✅ Semantic search across documents | | File storage | ✅ S3-based FabFiles system | | Database | ✅ MongoDB for metadata | | API framework | ✅ Next.js API routes + services pattern | | User management | ✅ Auth, organizations, permissions | | Credit/token system | ✅ Already monetizing AI operations | | WebSocket | ✅ Real-time updates | | Queue system | ✅ SQS for async processing | | LLM backends | ✅ Anthropic, OpenAI, Bedrock integrations |
This is a PERFECT product-market fit for the existing infrastructure!
Following Bike4Mind's service pattern, add new modules:
b4m-core/packages/services/src/
├── rightMarkService/
│ ├── index.ts
│ ├── analyzeWork.ts # Core originality analysis
│ ├── analyzeWork.test.ts
│ ├── createCertification.ts # Issue RightMark certificates
│ ├── createCertification.test.ts
│ ├── monitorWork.ts # Continuous scanning
│ ├── monitorWork.test.ts
│ ├── compareWorks.ts # Side-by-side comparison
│ ├── compareWorks.test.ts
│ ├── generateExpertReport.ts # Legal reports
│ ├── generateExpertReport.test.ts
│ └── types.ts
b4m-core/packages/utils/src/rightMark/
├── embeddingService.ts # Generate embeddings
├── similarityCalculator.ts # Cosine similarity, distance metrics
├── thresholdManager.ts # Load/update thresholds
└── scanService.ts # Web scanning for monitoring
Extend existing MongoDB schemas:
// RightMarkAnalysis Model
interface IRightMarkAnalysisDocument {
id: string;
userId: string;
organizationId?: string;
// Work metadata
workType: 'text' | 'image' | 'audio' | 'video' | 'code' | 'game';
workTitle: string;
workDescription?: string;
fabFileId?: string; // Link to FabFile if uploaded
// Analysis results
embedding: number[]; // Vector representation
originalityScore: number; // 0-100
nearestNeighbors: Array<{
workId: string;
similarityScore: number;
distance: number;
}>;
// Certification
certified: boolean;
certificationId?: string;
certifiedAt?: Date;
// Monitoring
monitoringEnabled: boolean;
lastScanAt?: Date;
alertThreshold: number; // Trigger alert if match > this score
createdAt: Date;
updatedAt: Date;
}
// RightMarkCertificate Model
interface IRightMarkCertificateDocument {
id: string;
analysisId: string;
userId: string;
// Certificate data
certificateNumber: string; // e.g., "RM-2025-123456"
workTitle: string;
originalityScore: number;
certifiedAt: Date;
expiresAt?: Date;
// Cryptographic proof
workHash: string; // SHA-256 of work content
signature: string; // Digital signature for verification
// Public verification URL
verificationUrl: string; // e.g., "https://rightmark.bike4mind.com/verify/RM-2025-123456"
}
// RightMarkAlert Model
interface IRightMarkAlertDocument {
id: string;
analysisId: string;
userId: string;
// Match details
matchedWorkId?: string;
matchedWorkUrl?: string;
similarityScore: number;
matchType: 'exact' | 'substantial' | 'partial' | 'deep_fake';
// Alert status
status: 'pending' | 'reviewed' | 'dismissed' | 'takedown_requested';
reviewedAt?: Date;
createdAt: Date;
}
// RightMarkThreshold Model
interface IRightMarkThresholdDocument {
id: string;
workType: 'text' | 'image' | 'audio' | 'video' | 'code' | 'game';
useCase: 'strict_copyright' | 'fair_use' | 'public_domain' | 'academic' | 'custom';
// Threshold settings
minOriginalityScore: number; // Below this = infringement risk
maxSimilarityScore: number; // Above this = too similar
// Governance
setBy: 'foundation' | 'admin' | 'user';
validFrom: Date;
validUntil?: Date;
// Supporting data
judgeSamples: number; // How many human judges contributed
confidence: number; // 0-1, how confident in this threshold
}
Add to existing Bike4Mind API:
// packages/client/pages/api/rightmark/
// Analysis
POST /api/rightmark/analyze
GET /api/rightmark/analyze/:id
DELETE /api/rightmark/analyze/:id
// Certification
POST /api/rightmark/certify/:analysisId
GET /api/rightmark/certificate/:certificateId
GET /api/rightmark/verify/:certificateNumber
// Monitoring
POST /api/rightmark/monitor/:analysisId/start
POST /api/rightmark/monitor/:analysisId/stop
GET /api/rightmark/alerts
POST /api/rightmark/alerts/:id/review
// Comparison (for legal)
POST /api/rightmark/compare
GET /api/rightmark/report/:comparisonId
// Admin
GET /api/rightmark/thresholds
POST /api/rightmark/thresholds (admin only)
Leverage FabFiles:
// When user uploads a file to FabFiles, offer RightMark analysis
const fabFile = await createFabFile(userId, params, adapters);
// Auto-trigger RightMark analysis
const analysis = await analyzeWork(userId, {
workType: detectWorkType(fabFile.mimeType),
fabFileId: fabFile.id,
monitoringEnabled: true,
}, adapters);
// Link back to FabFile
await updateFabFile(fabFile.id, {
rightMarkAnalysisId: analysis.id,
rightMarkScore: analysis.originalityScore,
});
Leverage Credit System:
// Charge credits for RightMark operations
const RIGHTMARK_COSTS = {
analyze: 50, // 50 credits per analysis
certify: 100, // 100 credits per certification
monitor_daily: 10, // 10 credits/day for monitoring
expert_report: 500, // 500 credits for legal report
};
// Deduct credits when user requests analysis
await deductCredits(userId, RIGHTMARK_COSTS.analyze, {
reason: 'rightmark_analysis',
metadata: { analysisId: analysis.id },
});
Leverage WebSocket:
// Real-time alerts for copyright matches
io.to(userSocketId).emit('rightmark:alert', {
type: 'match_found',
analysisId: analysis.id,
similarityScore: 92,
matchUrl: 'https://example.com/potential-copy',
});
// packages/utils/src/rightMark/embeddingService.ts
export class RightMarkEmbeddingService {
async generateEmbedding(
workType: WorkType,
content: Buffer | string,
options: EmbeddingOptions
): Promise<number[]> {
switch (workType) {
case 'text':
return this.generateTextEmbedding(content as string);
case 'image':
return this.generateImageEmbedding(content as Buffer);
case 'audio':
return this.generateAudioEmbedding(content as Buffer);
// ... etc
}
}
private async generateTextEmbedding(text: string): Promise<number[]> {
// Use OpenAI's text-embedding-3-large (3072 dimensions)
const response = await openai.embeddings.create({
model: 'text-embedding-3-large',
input: text,
});
return response.data[0].embedding;
}
private async generateImageEmbedding(image: Buffer): Promise<number[]> {
// Use CLIP or similar vision model
// Could leverage existing Anthropic vision API or Bedrock
const embedding = await claudeVisionEmbed(image);
return embedding;
}
}
// packages/utils/src/rightMark/similarityCalculator.ts
export class SimilarityCalculator {
// Cosine similarity: -1 to 1 (1 = identical, 0 = orthogonal, -1 = opposite)
cosineSimilarity(vecA: number[], vecB: number[]): number {
const dotProduct = vecA.reduce((sum, a, i) => sum + a * vecB[i], 0);
const magnitudeA = Math.sqrt(vecA.reduce((sum, a) => sum + a * a, 0));
const magnitudeB = Math.sqrt(vecB.reduce((sum, b) => sum + b * b, 0));
return dotProduct / (magnitudeA * magnitudeB);
}
// Angular distance: 0° to 180° (0° = identical, 90° = orthogonal, 180° = opposite)
angularDistance(vecA: number[], vecB: number[]): number {
const similarity = this.cosineSimilarity(vecA, vecB);
return Math.acos(Math.max(-1, Math.min(1, similarity))) * (180 / Math.PI);
}
// Originality score: 0-100 (100 = completely novel)
originalityScore(vecA: number[], vecB: number[]): number {
const angle = this.angularDistance(vecA, vecB);
return (angle / 180) * 100; // Normalize to 0-100
}
// Check if within infringement threshold
isInfringing(
vecA: number[],
vecB: number[],
threshold: IRightMarkThresholdDocument
): boolean {
const score = this.originalityScore(vecA, vecB);
return score < threshold.minOriginalityScore;
}
}
// packages/services/src/rightMarkService/monitorWork.ts
export const monitorWork = async (
userId: string,
params: {
analysisId: string;
scanFrequency: 'hourly' | 'daily' | 'weekly';
},
adapters: MonitorWorkAdapters
) => {
// Validate ownership
const analysis = await adapters.db.rightMarkAnalyses.findById(params.analysisId);
if (analysis.userId !== userId) throw new UnauthorizedError();
// Update monitoring status
analysis.monitoringEnabled = true;
analysis.scanFrequency = params.scanFrequency;
await adapters.db.rightMarkAnalyses.update(analysis);
// Schedule first scan (using SQS queue)
await adapters.queue.sendMessage('rightmark-scan-queue', {
analysisId: params.analysisId,
scanType: 'initial',
});
return analysis;
};
// Lambda handler for scan queue
export const handleScanQueue = async (event: SQSEvent) => {
for (const record of event.Records) {
const { analysisId } = JSON.parse(record.body);
// Perform web scan using search APIs (Google, Bing, etc.)
const matches = await scanInternet(analysisId);
// Create alerts for high-similarity matches
for (const match of matches) {
if (match.similarityScore > alertThreshold) {
await createAlert(analysisId, match);
await sendWebSocketAlert(userId, match);
}
}
// Schedule next scan based on frequency
await scheduleNextScan(analysisId);
}
};
// packages/services/src/rightMarkService/generateExpertReport.ts
export const generateExpertReport = async (
userId: string,
params: {
workA: string; // fabFileId or uploaded content
workB: string;
reportType: 'infringement_analysis' | 'fair_use_assessment' | 'prior_art_search';
},
adapters: ExpertReportAdapters
): Promise<IExpertReportDocument> => {
// Generate embeddings for both works
const embeddingA = await generateEmbedding(params.workA);
const embeddingB = await generateEmbedding(params.workB);
// Calculate similarity
const similarity = new SimilarityCalculator();
const score = similarity.originalityScore(embeddingA, embeddingB);
const angle = similarity.angularDistance(embeddingA, embeddingB);
// Generate visualizations
const heatmap = await generateSimilarityHeatmap(embeddingA, embeddingB);
const nearestNeighbors = await findNearestNeighbors(embeddingA, 10);
// Use LLM to generate expert narrative
const narrative = await generateExpertNarrative({
score,
angle,
threshold: await getThreshold(params.workType, 'strict_copyright'),
nearestNeighbors,
reportType: params.reportType,
});
// Generate PDF report
const report = await generatePDFReport({
workA: params.workA,
workB: params.workB,
similarityScore: score,
angularDistance: angle,
heatmap,
nearestNeighbors,
narrative,
methodology: 'RightMark Vector Embedding Analysis v1.0',
certifiedBy: 'RightMark Foundation',
analysisDate: new Date(),
});
// Store report
const reportDoc = await adapters.db.expertReports.create({
userId,
workAId: params.workA,
workBId: params.workB,
reportType: params.reportType,
similarityScore: score,
reportUrl: report.url, // S3 URL
createdAt: new Date(),
});
// Deduct credits (expert reports are expensive)
await deductCredits(userId, RIGHTMARK_COSTS.expert_report);
return reportDoc;
};
Deliverables:
b4m-coreResources:
Cost: $50K (labor) + $10K (infra/APIs)
Success Metrics:
Deliverables:
Resources:
Cost: $75K
Success Metrics:
Deliverables:
Resources:
Cost: $100K
Success Metrics:
Deliverables:
Resources:
Cost: $125K
Success Metrics:
Deliverables:
Resources:
Cost: $150K
Success Metrics:
Deliverables:
Resources:
Cost: $100K
Success Metrics:
| Segment | Year 1 | Year 2 | Year 3 | |---------|--------|--------|--------| | Education | $100K | $500K | $2M | | Legal/Courts | $50K | $300K | $1M | | Creative Pro | $25K | $200K | $1M | | Consumer | $10K | $100K | $500K | | API/Platform | $0 | $100K | $500K | | Total Revenue | $185K | $1.2M | $5M | | Gross Margin | 60% | 70% | 75% | | Operating Costs | $600K | $1.5M | $3M | | Net Income | -$489K | -$660K | +$750K |
Breakeven: Month 22 Profitability: Month 30
Why RightMark on Bike4Mind wins:
RightMark is not just a product—it's a paradigm shift.
By bringing objective measurement to copyright, it:
And best of all: Bike4Mind already has 90% of the technology needed to build it.
This is a rare opportunity to create a $1B+ category-defining company using infrastructure you've already built.
Next Steps:
Erik, this is your "obvious in hindsight" moment. Let's build it. 🚀
Consciousness is complex information processing
Wow, that's an incredibly thoughtful and detailed proposal for the features needed to create an arti
Leylines: On Discovery, Creation, and Navigating the Hyperdimensional Universe
Everything that can exist, does exist—somewhere in the vast hyperdimensional universe. The question isn't whether to discover or create, but how effic...
Claude Code as My GitHub Project Manager: 35 Issues Triaged in Minutes
How Claude Code helped me triage 35 GitHub issues, close 9 completed features, create app labels, and build a ghetto newsletter system - all while shi...
Get notified when I publish new blog posts about game development, AI, entrepreneurship, and technology. No spam, unsubscribe anytime.
Published: November 27, 2025 9:40 PM
Last updated: November 27, 2025 9:36 PM
Post ID: b19ae85f-b0dc-4f82-83e0-48c7bcf4f43dLoading comments...